987 resultados para HELPER-CELLS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cytokine interleukin (IL) 18 (formerly interferon γ-inducing factor) induces the T helper type 1 response. In the present studies, IL-18 increased HIV type 1 (HIV-1) production from 5- to 30-fold in the chronically infected U1 monocytic cell line. Inhibition of tumor necrosis factor (TNF) activity by the addition of TNF-binding protein reduced IL-18-stimulated HIV-1 production by 48%. In the same cultures, IL-18-induced IL-8 was inhibited by 96%. Also, a neutralizing anti-IL-6 mAb reduced IL-18-induced HIV-1 by 63%. Stimulation of U1 cells with IL-18 resulted in increased production of IL-6, and exogenous IL-6 added to U1 cells increased HIV-1 production 4-fold over control. A specific inhibitor of the p38 mitogen-activated protein kinase reduced IL-18-induced HIV-1 by 73%, and a 50% inhibition was observed at 0.05 μM. In the same cultures, IL-8 was inhibited by 87%. By gel-shift and supershift analyses, increased binding activity of the transcription factor NF-κB was measured in nuclear extracts from U1 cells 1 h after exposure to IL-18. These results demonstrate induction of HIV-1 by IL-18 in a monocyte target associated with an intermediate role for TNF and IL-6, activation of p38 mitogen-activated protein kinase, and nuclear translocation of NF-κB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIDS is characterized by a progressive decrease of CD4+ helper T lymphocytes. Destruction of these cells may involve programmed cell death, apoptosis. It has previously been reported that apoptosis can be induced even in noninfected cells by HIV-1 gp120 and anti-gp120 antibodies. HIV-1 gp120 binds to T cells via CD4 and the chemokine coreceptor CXCR4 (fusin/LESTR). Therefore, we investigated whether CD4 and CXCR4 mediate gp120-induced apoptosis. We used human peripheral blood lymphocytes, malignant T cells, and CD4/CXCR4 transfectants, and found cell death induced by both cell surface receptors, CD4 and CXCR4. The induced cell death was rapid, independent of known caspases, and lacking oligonucleosomal DNA fragmentation. In addition, the death signals were not propagated via p56lck and Giα. However, the cells showed chromatin condensation, morphological shrinkage, membrane inversion, and reduced mitochondrial transmembrane potential indicative of apoptosis. Significantly, apoptosis was exclusively observed in CD4+ but not in CD8+ T cells, and apoptosis triggered via CXCR4 was inhibited by stromal cell-derived factor-1, the natural CXCR4 ligand. Thus, this mechanism of apoptosis might contribute to T cell depletion in AIDS and might have major implications for therapeutic intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relative deficiency of T helper type 1 (Th1) and cytotoxic T lymphocyte (CTL) responses in early life is associated with an increased susceptibility to infections by intracellular microorganisms. This is likely to reflect a preferential polarization of immature CD4 T cells toward a Th2 rather than a Th1 pattern upon immunization with conventional vaccines. In this report, it is shown that a single immunization within the first week of life with DNA plasmids encoding viral (measles virus hemagglutinin, Sendai virus nucleoprotein) or bacterial (C fragment of tetanus toxin) vaccine antigens can induce adult-like Th1 or mixed Th1/Th2 responses indicated by production of IgG2a vaccine-specific antibodies and preferential secretion of interferon-γ (IFN-γ) compared with interleukin (IL)-5 by antigen-specific T cells, as well as significant CTL responses. However, in spite of this potent Th1-driving capacity, subsequent DNA immunization was not capable of reverting the Th2-biased responses induced after early priming with a recombinant measles canarypox vector. Thus, DNA vaccination represents a novel strategy capable of inducing Th1 or mixed Th1/Th2 and CTL responses in neonates and early life, providing it is performed prior to exposure to Th2-driving conventional vaccine antigens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The HLA class II-associated invariant chain (Ii)-derived peptide (CLIP) occupies the peptide binding groove during assembly in the endoplasmic reticulum, travels with HLA class II to endosomal compartments, and is subsequently released to allow binding of antigenic peptides. We investigated whether the exchange of CLIP with a known T helper epitope at the DNA level would lead to efficient loading of this helper epitope onto HLA class II. For this purpose, a versatile Ii-encoding expression vector was created in which CLIP can be replaced with a helper epitope of choice. Upon supertransfection of HLA-DR1-transfected 293 cells with an Ii vector encoding a known T helper epitope (HA307–319), predominantly length variants of this epitope were detected in association with the HLA-DR1 molecules of these cells. Moreover, this transfectant was efficiently recognized by a peptide-specific T helper clone (HA1.7). The results suggest that this type of Ii vector can be used to create potent class II+ cellular vaccines in which defined T cell epitopes are continuously synthesized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immunization with live attenuated simian immunodeficiency virus (SIV) strains has proved to be one of the most effective strategies to induce protective immunity in the SIV/macaque model. To better understand the role that CD4+ T helper responses may play in mediating protection in this model, we characterized SIV-specific proliferative and cytokine responses in macaques immunized with live attenuated SIV strains. Macaques chronically infected with live attenuated SIV had strong proliferative responses to SIV proteins, with stimulation indices of up to 74. The magnitude of the proliferative response to SIV Gag varied inversely with the degree of attenuation; Gag-specific but not envelope-specific responses were lower in animals infected with more highly attenuated SIV strains. SIV-specific stimulation of lymphocytes from vaccinated macaques resulted in secretion of interferon-γ, IL-2, regulated-upon-activation, normal T cells expressed and secreted (RANTES), macrophage inflammatory protein (MIP)-1α, and MIP-1β but not IL-4 or IL-10. Intracellular flow cytometric analysis documented that, in macaques vaccinated with SIVmac239Δnef, up to 2% of all CD4+T cells were specific for SIV p55. The ability of live attenuated SIV to induce a strong, sustained type 1 T helper response may play a role in the success of this vaccination approach to generate protection against challenge with wild-type SIV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-affinity binding was demonstrated between suppressor-T-cell-derived bioactive glycosylation-inhibiting factor (GIF) and helper T hybridomas and natural killer cell line cells. Inactive GIF present in cytosol of suppressor T cells and Escherichia coli-derived recombinant human GIF (rhGIF) failed to bind to these cells. However, affinity of rhGIF for the target cells was generated by replacement of Cys-57 in the sequence with Ala or of Asn-106 with Ser or binding of 5-thio-2-nitrobenzoic acid to Cys-60 in the molecule. Such mutations and the chemical modification of rhGIF synergistically increased the affinity of GIF molecules for the target cells. The results indicated that receptors on the target cells recognize conformational structures of bioactive GIF. Equilibrium dissociation constant (Kd) of the specific binding between bioactive rGIF derivatives and high-affinity receptors was 10–100 pM. Receptors for bioactive GIF derivatives were detected on Th1 and Th2 T helper clones and natural killer NK1.1+ cells in normal spleen but not on naive T or B cells. Neither the inactive rGIF nor bioactive rGIF derivatives bound to macrophage and monocyte lines or induced macrophages for tumor necrosis factor α production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important signaling pathway for the differentiation of T helper type 2 (TH2) cells from uncommitted CD4 T cell precursors is activation of the STAT6 transcription factor by interleukin 4 (IL-4). The protooncogene BCL-6 is also involved in TH2 differentiation, as BCL-6 −/− mice develop an inflammation of the heart and lungs associated with an overproduction of TH2 cells. Surprisingly, IL-4 −/− BCL-6 −/− and STAT6 −/− BCL-6 −/− double-mutant mice developed the same TH2-type inflammation of the heart and lungs as is characteristic of BCL-6 −/− mice. Furthermore, a TH2 cytokine response developed in STAT6 −/− BCL-6 −/− and IL-4 −/− BCL-6 −/− mice after immunization with a conventional antigen in adjuvant. In contrast to these in vivo findings, STAT6 was required for the in vitro differentiation of BCL-6 −/− T cells into TH2 cells. BCL-6, a transcriptional repressor that can bind to the same DNA binding motifs as STAT transcription factors, seems to regulate TH2 responses in vivo by a pathway independent of IL-4 and STAT6.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HMG I(Y) proteins bind to double-stranded A+T oligonucleotides longer than three base pairs. Such motifs form part of numerous NF-AT-binding sites of lymphokine promoters, including the interleukin 4 (IL-4) promoter. NF-AT factors share short homologous peptide sequences in their DNA-binding domain with NF-κB factors and bind to certain NF-κB sites. It has been shown that HMG I(Y) proteins enhance NF-κB binding to the interferon β promoter and virus-mediated interferon β promoter induction. We show that HMG I(Y) proteins exert an opposite effect on the DNA binding of NF-AT factors and the induction of the IL-4 promoter in T lymphocytes. Introduction of mutations into a high-affinity HMG I(Y)-binding site of the IL-4 promoter, which decreased HMG I(Y)-binding to a NF-AT-binding sequence, the Pu-bB (or P) site, distinctly increased the induction of the IL-4 promoter in Jurkat T leukemia cells. High concentrations of HMG I(Y) proteins are able to displace NF-ATp from its binding to the Pu-bB site. High HMG I(Y) concentrations are typical for Jurkat cells and peripheral blood T lymphocytes, whereas El4 T lymphoma cells and certain T helper type 2 cell clones contain relatively low HMG I(Y) concentrations. Our results indicate that HMG I(Y) proteins do not cooperate, but instead compete with NF-AT factors for the binding to DNA even though NF-AT factors share some DNA-binding properties with NF-kB factors. This competition between HMG I(Y) and NF-AT proteins for DNA binding might be due to common contacts with minor groove nucleotides of DNA and may be one mechanism contributing to the selective IL-4 expression in certain T lymphocyte populations, such as T helper type 2 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The immune response to T helper (Th) cell determinants of a variety of antigens is often poor and limits severely the potential efficacy of current therapeutic measures through vaccination. Here, we report that an immunologically silent tumor determinant can be rendered immunogenic if linked with a dominant determinant of a parasite antigen, suggesting the existence of functional Th–Th cooperation in vivo. This phenomenon could be mimicked in part by signaling either through CD40 to the antigen-presenting cells or through OX40 to the tumor-determinant reactive T cells, with maximal effects obtained by combined anti-CD40 and anti-OX40 treatment in vivo. The data suggest that CD4 T cells reactive with a dominant determinant provide help to other CD4 T cells through up-regulating the costimulatory ability of antigen-presenting cells, in much the same way as help for CD8 cells. CD4 help for CD4 T cells represents a new immunological principle and offers new practical solutions for vaccine therapy against cancer and other diseases in which antigenic help is limiting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trimolecular interactions between the T cell antigen receptor and MHC/peptide complexes, together with costimulatory molecules and cytokines, control the initial activation of naïve T cells and determine whether the helper precursor cell differentiates into either T helper (TH)1 or TH2 effector cells. We now present evidence that regulatory CD8+ T cells provide another level of control of TH phenotype during further evolution of immune responses. These regulatory CD8+ T cells are induced by antigen-triggered CD4+ TH1 cells during T cell vaccination and, in vitro, distinguish mature TH1 from TH2 cells in a T cell antigen receptor Vβ-specific and Qa-1-restricted manner. In vivo, protection from experimental autoimmune encephalomyelitis (EAE) induced by T cell vaccination depends on CD8+ T cells, and myelin basic protein-reactive TH1 Vβ8+ clones, but not TH2 Vβ8+ clones, used as vaccine T cells, protect animals from subsequent induction of EAE. Moreover, in vivo depletion of CD8+ T cells during the first episode of EAE results in skewing of the TH phenotype toward TH1 upon secondary myelin basic protein stimulation. These data provide evidence that CD8+ T cells control autoimmune responses, in part, by regulating the TH phenotype of self-reactive CD4+ T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic background of the T cell can influence T helper (Th) phenotype development, with some murine strains (e.g., B10.D2) favoring Th1 development and others (e.g., BALB/c) favoring Th2 development. Recently we found that B10.D2 exhibit an intrinsically greater capacity to maintain interleukin 12 (IL-12) responsiveness under neutral conditions in vitro compared with BALB/c T cells, allowing for prolonged capacity to undergo IL-12-induced Th1 development. To begin identification of the loci controlling this genetic effect, we used a T-cell antigen receptor-transgenic system for in vitro analysis of intercrosses between BALB/c and B10.D2 mice and have identified a locus on murine chromosome 11 that controls the maintenance of IL-12 responsiveness, and therefore the subsequent Th1/Th2 response. This chromosomal region is syntenic with a locus on human chromosome 5q31.1 shown to be associated with elevated serum IgE levels, suggesting that genetic control of Th1/Th2 differentiation in mouse, and of atopy development in humans, may be expressed through similar mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a heterologous, Semliki Forest virus (SFV)-driven packaging system for the production of infectious recombinant Moloney murine leukemia virus particles. The gag-pol and env genes, as well as a recombinant retrovirus genome (LTR-psi (+)-neoR-LTR), were inserted into individual SFV1 expression plasmids. Replication-competent RNAs were transcribed in vitro and introduced into the cytoplasm of BHK-21 cells using electroporation. The expressed Moloney murine leukemia virus structural proteins produced extracellular virus-like particles. In these particles the gag precursor was processed into mature products, indicating that the particles contained an active protease. The protease of the gag-pol fusion protein was also shown to be active in a trans-complementation assay using a large excess of Pr65gag. Moreover, the particles possessed reverse transcriptase (RT) activity as measured in an in vitro assay. Cotransfection of BHK-21 cells by all three SFV1 constructs resulted in the production of transduction-competent particles at 4 x 10(6) colony-forming units (cfu)/ml during a 5-hr incubation period. Altogether, 2.9 x 10(7) transduction-competent particles were obtained from about 4 x 10(6) transfected cells. Thus, this system represents the first RNA-based packaging system for the production of infectious retroviral particles. The facts that no helper virus could be detected in the virus stocks and that particles carrying the amphotropic envelope could be produced with similar efficiency as those that carry the ecotropic envelope make the system very interesting for gene therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostaglandin E2 (PGE2) is a potent lipid molecule with complex proinflammatory and immunoregulatory properties. PGE2 can shape the immune response by stimulating the production of IgE antibody by B lymphocytes and the synthesis of T-helper type 2 cytokines [e.g., interleukin (IL)-4, IL-10], while inhibiting production of Th1 cytokines (e.g., interferon-gamma, IL-12). It is unknown what type of receptor binds PGE2 and modulates these responses. Recent analyses in nonhematopoietic cells have identified six PGE2 receptors (EP1, EP2, EP3 alpha, EP3 beta, EP3 gamma, and EP4). This investigation examines quiescent B lymphocytes and reports that these cells express mRNA encoding EP1, EP2, EP3 beta, and EP4 receptors. The immunoregulatory functions of each receptor were investigated using small molecule agonists that preferentially bind EP receptor subtypes. Unlike agonists for EP1 and EP3, agonists that bound EP2 or EP2 and EP4 receptors strongly inhibited expression of class II major histocompatibility complex and CD23 and blocked enlargement of mouse B lymphocytes stimulated with IL-4 and/or lipopolysaccharide. PGE2 promotes differentiation and synergistically enhances IL-4 and lipopolysaccharide-driven B-cell immunoglobulin class switching to IgE. Agonists that bound EP2 or EP2 and EP4 receptors also strongly stimulated class switching to IgE. Experiments employing inhibitors of cAMP metabolism demonstrate that the mechanism by which EP2 and EP4 receptors regulate B lymphocyte activity requires elevation of cAMP. In conclusion, these data suggest that antagonists to EP2 and EP4 receptors will be important for diminishing allergic and IgE-mediated asthmatic responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The p40 subunit of interleukin 12 (IL-12p40) has been known to act as an IL-12 antagonist in vitro. We here describe the immunosuppressive effect of IL-12p40 in vivo. A murine myoblast cell line, C2C12, was transduced with retro-virus vectors carrying the lacZ gene as a marker and the IL-12p40 gene. IL-12p40 secreted from the transfectant inhibited the IL-12-induced interferon gamma (IFN-gamma) production by splenocytes in vitro. Survival of C2C12 transplanted into allogeneic recipients was substantially prolonged when transduced with IL-12p40. Cytokine (IL-2 and IFN-gamma) production and cytotoxic T lymphocyte induction against allogeneic C2C12 were impaired in the recipients transplanted with the IL-12p40 transfectant. Delayed-type hypersensitivity response against C2C12 was also diminished in the IL-12p40 recipients. Furthermore, serum antibodies against beta-galactosidase of the T-helper 1-dependent isotypes (IgG2 and IgG3) were decreased in the IL-12p40 recipients. These results indicate that locally produced IL-12p40 exerts a potent immunosuppressive effect on T-helper 1-mediated immune responses that lead to allograft rejection. Therefore, IL-12p40 gene transduction would be useful for preventing the rejection of allografts and genetically modified own cells that are transduced with potentially antigenic molecules in gene therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Upon stimulation with anti-CD3, suppressor T-cell (Ts) hybridomas and homologous transfectants of T-cell receptor a (TCRalpha) cDNA in the T-cell hybridoma formed a 55-kDa TCRalpha chain derivative that bound both the monoclonal anti-TCRalpha chain and polyclonal antibodies against glycosylation inhibiting factor (GIF). The peptide is a subunit of antigen-specific suppressor T-cell factor (TsF), and is considered to be a posttranslationally-formed conjugate of TCRalpha chain with GIF peptide. The TCRalpha derivative is synthesized by the transfectant after stimulation with anti-CD3, and not derived from TCR present on the cell surface. Stimulation of the stable homologous transfectants with anti-CD3 induced translocation of the 13-kDa GIF peptide into endoplasmic reticulum (ER). When a helper Ts hybridoma or a stable transfectant of the same TCRalpha cDNA in a helper cell-derived TCRalpha- clone was stimulated with anti-CD3, translocation of GIF peptide was not detected, and these cells failed to secrete a TCRalpha derivative. However, further transfection of a chimeric cDNA encoding a procalcitonin-GIF fusion protein into the helper cell-derived stable transfectant of TCRalpha cDNA resulted in translocation of the GIF protein and formation of bioactive 55-kDa GIF. The results indicated that translocation of GIF peptide through ER is unique for Ts cells, and that this process is essential for the formation/secretion of the soluble form derivative of TCRalpha chain by T cells.