948 resultados para HARD-SCATTERING
Resumo:
In the present work we report the results of the growth, morphological and structural characterization of Cu2ZnSnS4 (CZTS) thin films prepared by sulfurization of DC magnetron sputtered Cu/Zn/Sn precursor layers. The adjustment of the thicknesses and the properties of the precursors were used to control the final composition of the films. Its properties were studied by SEM/EDS, XRD and Raman scattering. The influence of the sulfurization temperature on the morphology, composition and structure of the films has been studied. With the presented method we have been able to prepare CZTS thin films with the kesterite structure.
Resumo:
Cu2ZnSnS4 (CZTS) is a p-type semiconductor that has been seen as a possible low-cost replacement for Cu(In,Ga)Se2 in thin film solar cells. So far compound has presented difficulties in its growth, mainly, because of the formation of secondary phases like ZnS, CuxSnSx+1, SnxSy, Cu2−xS and MoS2. X-ray diffraction analysis (XRD), which is mostly used for phase identification cannot resolve some of these phases from the kesterite/stannite CZTS and thus the use of a complementary technique is needed. Raman scattering analysis can help distinguishing these phases not only laterally but also in depth. Knowing the absorption coefficient and using different excitation wavelengths in Raman scattering analysis, one is capable of profiling the different phases present in multi-phase CZTS thin films. This work describes in a concise form the methods used to grow chalcogenide compounds, such as, CZTS, CuxSnSx+1, SnxSy and cubic ZnS based on the sulphurization of stacked metallic precursors. The results of the films’ characterization by XRD, electron backscatter diffraction and scanning electron microscopy/energy dispersive spectroscopy techniques are presented for the CZTS phase. The limitation of XRD to identify some of the possible phases that can remain after the sulphurization process are investigated. The results of the Raman analysis of the phases formed in this growth method and the advantage of using this technique in identifying them are presented. Using different excitation wavelengths it is also analysed the CZTS film in depth showing that this technique can be used as non destructive methods to detect secondary phases.
Resumo:
In this report, the Hard Real-Time Subsystem of DEAR-COTS is described, and the services it must provide are identified. This report is an input of ISEP/IPP and FEUP for the specification of the DEAR-COTS architecture (deliverable to the FCT).
Resumo:
It is generally challenging to determine end-to-end delays of applications for maximizing the aggregate system utility subject to timing constraints. Many practical approaches suggest the use of intermediate deadline of tasks in order to control and upper-bound their end-to-end delays. This paper proposes a unified framework for different time-sensitive, global optimization problems, and solves them in a distributed manner using Lagrangian duality. The framework uses global viewpoints to assign intermediate deadlines, taking resource contention among tasks into consideration. For soft real-time tasks, the proposed framework effectively addresses the deadline assignment problem while maximizing the aggregate quality of service. For hard real-time tasks, we show that existing heuristic solutions to the deadline assignment problem can be incorporated into the proposed framework, enriching their mathematical interpretation.
Resumo:
A large part of power dissipation in a system is generated by I/O devices. Increasingly these devices provide power saving mechanisms, inter alia to enhance battery life. While I/O device scheduling has been studied in the past for realtime systems, the use of energy resources by these scheduling algorithms may be improved. These approaches are crafted considering a very large overhead of device transitions. Technology enhancements have allowed the hardware vendors to reduce the device transition overhead and energy consumption. We propose an intra-task device scheduling algorithm for real time systems that allows to shut-down devices while ensuring system schedulability. Our results show an energy gain of up to 90% when compared to the techniques proposed in the state-of-the-art.
Resumo:
This work demonstrates the feasibility of using polymeric micro- and nanofiber-composed films and liquid crystals as electrically switchable scattering light shutters. We present a concept of electro-optic device based on an innovative combination of two mature technologies: optics of nematic liquid crystals and electrospinning of nanofibers. These devices have electric and optical characteristics far superior to other comparable methods. The simulation presented shows results that are highly consistent with those of experiments and that explain the working mechanism of the devices.
Low temperature structural transitions in dipolar hard spheres: the influence on magnetic properties
Resumo:
We investigate the structural chain-to-ring transition at low temperature in a gas of dipolar hard spheres (DRS). Due to the weakening of entropic contribution, ring formation becomes noticeable when the effective dipole-dipole magnetic interaction increases, It results in the redistribution of particles from usually observed flexible chains into flexible rings. The concentration (rho) of DI-IS plays a crucial part in this transition: at a very low rho only chains and rings are observed, whereas even a slight increase of the volume fraction leads to the formation of branched or defect structures. As a result, the fraction of DHS aggregated in defect-free rings turns out to be a non-monotonic function of rho. The average ring size is found to be a slower increasing function of rho when compared Lo that of chains. Both theory and computer simulations confirm the dramatic influence of the ring formation on the rho-dependence of the initial magnetic susceptibility (chi) when the temperature decreases. The rings clue to their zero total dipole moment are irresponsive to a weak magnetic field and drive to the strong decrease of the initial magnetic susceptibility. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Over the past decades several approaches for schedulability analysis have been proposed for both uni-processor and multi-processor real-time systems. Although different techniques are employed, very little has been put forward in using formal specifications, with the consequent possibility for mis-interpretations or ambiguities in the problem statement. Using a logic based approach to schedulability analysis in the design of hard real-time systems eases the synthesis of correct-by-construction procedures for both static and dynamic verification processes. In this paper we propose a novel approach to schedulability analysis based on a timed temporal logic with time durations. Our approach subsumes classical methods for uni-processor scheduling analysis over compositional resource models by providing the developer with counter-examples, and by ruling out schedules that cause unsafe violations on the system. We also provide an example showing the effectiveness of our proposal.
Resumo:
In this paper, we propose the Distributed using Optimal Priority Assignment (DOPA) heuristic that finds a feasible partitioning and priority assignment for distributed applications based on the linear transactional model. DOPA partitions the tasks and messages in the distributed system, and makes use of the Optimal Priority Assignment (OPA) algorithm known as Audsley’s algorithm, to find the priorities for that partition. The experimental results show how the use of the OPA algorithm increases in average the number of schedulable tasks and messages in a distributed system when compared to the use of Deadline Monotonic (DM) usually favoured in other works. Afterwards, we extend these results to the assignment of Parallel/Distributed applications and present a second heuristic named Parallel-DOPA (P-DOPA). In that case, we show how the partitioning process can be simplified by using the Distributed Stretch Transformation (DST), a parallel transaction transformation algorithm introduced in [1].
Resumo:
Presented at 21st IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2015). 19 to 21, Aug, 2015, pp 122-131. Hong Kong, China.
Resumo:
Dissertação para obtenção do Grau de Mestre em Logica Computicional
Resumo:
The role of a set of gases relevant within the context of biomolecules and technologically relevant molecules under the interaction of low-energy electrons was studied in an effort to contribute to the understanding of the underlying processes yielding negative ion formation. The results are relevant within the context of damage to living material exposed to energetic radiation, to the role of dopants in the ion-molecule chemistry processes, to Electron Beam Induced Deposition (EBID) and Ion Beam Induced Deposition (IBID) techniques. The research described in this thesis addresses dissociative electron attachment (DEA) and electron transfer studies involving experimental setups from the University of Innsbruck, Austria and Universidade Nova de Lisboa, Portugal, respectively. This thesis presents DEA studies, obtained by a double focusing mass spectrometer, of dimethyl disulphide (C2H6S2), two isomers, enflurane and isoflurane (C3F5Cl5) and two chlorinated ethanes, pentachloroethane (C2HCl5) and hexachloroethane (C2Cl6), along with quantum chemical calculations providing information on the molecular orbitals as well as thermochemical thresholds of anion formation for enflurane, isoflurane, pentachloroethane and hexachloroethane. The experiments represent the most accurate DEA studies to these molecules, with significant differences from previous work reported in the literature. As far as electron transfer studies are concerned, negative ion formation in collisions of neutral potassium atoms with N1 and N3 methylated pyrimidine molecules were obtained by time-of-flight mass spectrometry (TOF). The results obtained allowed to propose concerted mechanisms for site and bond selective excision of bonds.
Resumo:
Adatom-decorated graphene offers a promising new path towards spintronics in the ultrathin limit. We combine experiment and theory to investigate the electronic properties of dilutely fluorinated bilayer graphene, where the fluorine adatoms covalently bond to the top graphene layer. We show that fluorine adatoms give rise to resonant impurity states near the charge neutrality point of the bilayer, leading to strong scattering of charge carriers and hopping conduction inside a field-induced band gap. Remarkably, the application of an electric field across the layers is shown to tune the resonant scattering amplitude from fluorine adatoms by nearly twofold. The experimental observations are well explained by a theoretical analysis combining Boltzmann transport equations and fully quantum-mechanical methods. This paradigm can be generalized to many bilayer graphene-adatom materials, and we envision that the realization of electrically tunable resonance may be a key advantage in graphene-based spintronic devices.
Resumo:
The paper uses a range of primary-source empirical evidence to address the question: ‘why is it to hard to value intangible assets?’ The setting is venture capital investment in high technology companies. While the investors are risk specialists and financial experts, the entrepreneurs are more knowledgeable about product innovation. Thus the context lends itself to analysis within a principal-agent framework, in which information asymmetry may give rise to adverse selection, pre-contract, and moral hazard, post-contract. We examine how the investor might attenuate such problems and attach a value to such high-tech investments in what are often merely intangible assets, through expert due diligence, monitoring and control. Qualitative evidence is used to qualify the more clear cut picture provided by a principal-agent approach to a more mixed picture in which the ‘art and science’ of investment appraisal are utilised by both parties alike