989 resultados para HAMSTER OVARY CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT. A dual-wavelength digital holographic microscope to measure absolute volume of living cells is proposed. The optical setup allows us to reconstruct two quantitative phase contrast images at two different wavelengths from a single hologram acquisition. When adding the absorbing dye fast green FCF as a dispersive agent to the extracellular medium, cellular thickness can be univocally determined in the full field of view. In addition to the absolute cell volume, the method can be applied to derive important biophysical parameters of living cells including osmotic membrane water permeability coefficient and the integral intracellular refractive index (RI). Further, the RI of transmembrane flux can be determined giving an indication about the nature of transported solutes. The proposed method is applied to cultured human embryonic kidney cells, Chinese hamster ovary cells, human red blood cells, mouse cortical astrocytes, and neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enzyme replacement therapy has recently been introduced to treat Fabry disease, a rare X-linked lysosomal storage disorder. The disease occurs due to deficient activity of alpha-galactosidase A, leading to progressive accumulation of globotriaosylceramide in multiple organs and tissues. Renal, cardiac and cerebrovascular manifestations of the disease result in premature death in both hemizygous males and heterozygous females. This paper outlines the clinical signs, symptoms and diagnosis of Fabry disease, and the development of the two available enzyme replacement therapies -- agalsidase alfa and agalsidase beta. Agalsidase alfa and agalsidase beta are produced in a human cell line and in Chinese hamster ovary cells, respectively, resulting in products with the same amino acid sequence as the native human enzyme, but with different patterns of glycosylation. Correct post-translational glycosylation is important in terms of the pharmacokinetics, biodistribution, clinical efficacy and tolerability of genetically engineered protein therapeutics. Differences in glycosylation, which may affect immunogenicity and mannose-6-phosphate receptor-mediated cellular internalisation of administered enzyme, possibly account for the differences in dosing, clinical effects and safety profiles reported for agalsidase alfa and agalsidase beta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In previous studies we showed that the wild-type histamine H(2) receptor stably expressed in Chinese hamster ovary cells is constitutively active. Because constitutive activity of the H(2) receptor is already found at low expression levels (300 fmol/mg protein) this receptor is a relatively unique member of the G-protein-coupled receptor (GPCR) family and a useful tool for studying GPCR activation. In this study the role of the highly conserved DRY motif in activation of the H(2) receptor was investigated. Mutation of the aspartate 115 residue in this motif resulted in H(2) receptors with high constitutive activity, increased agonist affinity, and increased signaling properties. In addition, the mutant receptors were shown to be highly structurally instable. Mutation of the arginine 116 residue in the DRY motif resulted also in a highly structurally instable receptor; expression of the receptor could only be detected after stabilization with either an agonist or inverse agonist. Moreover, the agonist affinity at the Arg-116 mutant receptors was increased, whereas the signal transduction properties of these receptors were decreased. We conclude that the Arg-116 mutant receptors can adopt an active conformation but have a decreased ability to couple to or activate the G(s)-protein. This study examines the pivotal role of the aspartate and arginine residues of the DRY motif in GPCR function. Disruption of receptor stabilizing constraints by mutation in the DRY motif leads to the formation of active GPCR conformations, but concomitantly to GPCR instability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we investigated the biochemical mechanisms of agonist action at the G protein-coupled D-2 dopamine receptor expressed in Chinese hamster ovary cells. Stimulation of guanosine 5'-O-(3-[S-35]thio) triphosphate ([S-35]GTPgammaS) binding by full and partial agonists was determined at different concentrations of [S-35]GTPgammaS (0.1 and 10 nM) and in the presence of different concentrations of GDP. At both concentrations of [S-35]GTPgammaS, increasing GDP decreased the [S-35]GTPgammaS binding observed with maximally stimulating concentrations of agonist, with partial agonists exhibiting greater sensitivity to the effects of GDP than full agonists. The relative efficacy of partial agonists was greater at the lower GDP concentrations. Concentration-response experiments were performed for a range of agonists at the two [S-35]GTPgammaS concentrations and with different concentrations of GDP. At 0.1 nM [S-35]GTPgammaS, the potency of both full and partial agonists was dependent on the GDP concentration in the assays. At 10 nM [S-35]GTPgammaS, the potency of full agonists exhibited a greater dependence on the GDP concentration, whereas the potency of partial agonists was virtually independent of GDP. We concluded that at the lower [S-35]GTPgammaS concentration, the rate-determining step in G protein activation is the binding of [S-35]GTPgammaS to the G protein. At the higher [S-35]GTPgammaS concentration, for full agonists, [S-35]GTPgammaS binding remains the slowest step, whereas for partial agonists, another (GDP-independent) step, probably ternary complex breakdown, becomes rate-determining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social and economical development is closely associated with technological innovation and a well-developed biotechnological industry. In the last few years, Brazil`s scientific production has been steadily increasing; however, the number of patents is lagging behind, with technological and translational research requiring governmental incentive and reinforcement. The Cell and Molecular Therapy Center (NUCEL) was created to develop activities in the translational research field, addressing concrete problems found in biomedical and veterinary areas and actively searching for solutions by employing a genetic engineering approach to generate cell lines over-expressing recombinant proteins to be transferred to local biotech companies, aiming at furthering the development of a national competence for local production of biopharmaceuticals of widespread use and of life-saving importance. To this end, mammalian cell engineering technologies were used to generate cell lines over-expressing several different recombinant proteins of biomedical and biotechnological interest, namely, recombinant human Amylin/IAPP for diabetes treatment, human FVIII and FIX clotting factors for hemophilia, human and bovine FSH for fertility and reproduction, and human bone repair proteins (BMPs). Expression of some of these proteins is also being sought with the baculovirus/insect cell system (BEVS) which, in many cases, is able to deliver high-yield production of recombinant proteins with biological activity comparable to that of mammalian systems, but in a much more cost-effective manner. Transfer of some of these recombinant products to local Biotech companies has been pursued by taking advantage of the Sao Paulo State Foundation (FAPESP) and Federal Government (FINEP, CNPq) incentives for joint Research Development and Innovation partnership projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homeopathic medicines have been used for over two hundred years without the examination of their effects on in vivo and in vitro assays, due to the peculiarity of homeopathic preparations, the high dilution, which creates a challenge for the use of usual analytical techniques of quality control of medicine.Although there is scarcity of literature and variety of experiments, recently there have been some studies with few in vitro assays which have shown positive responses when evaluating the mechanism of action of homeopathic medicines which are able to act on a specific system.The present study aims to evaluate the efficacy of homeopathic products containing Momordica charantia through bioassays.Homeopathic products were tested by the MTT to assess cytotoxicity in RAW 264.7 (macrophage-like cells) and in tumor cells HeLa (human cervical adenocarcinoma cells), CHO K1 (Chinese hamster ovary cells), PANC-1 (human pancreas cancer cells) and PC-3 (human prostate cancer cells), dosage of inflammatory mediators NO, TNF-α and IL-6 released by RAW 264.7 cells, analysis of the death process and cell cycle changes of PC-3 by flow cytometry. The data demonstrate that homeopathic products of Momordica charantia did not show cytotoxicity to RAW 264.7, increased the production of inflammatory mediators by RAW 264.7 synergistically with LPS, showed cytotoxicity to PC-3 with change in its cell cycle inhibiting its proliferation, being the 30CH the most potent sample. Correlation studies were conducted in order to evaluate the possible in vitro applicable models to the quality control of homeopathic products with Momordica charantia. The data showed that the best applicable models in assessing the quality are the MTT to assess cytotoxicity in RAW 264.7 and PC-3 in 24 hours for Momordica charantia fruit products and dosage of NO production by RAW 264.7 with and without LPS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study was to investigate the ability of fluoride to modulate the genotoxic effects induced by the oxidative agent hydrogen peroxide (H2O2) and the alkylating agent methyl methanesulfonate (MMS) in vitro by the single-cell gel ( comet) assay. Chinese hamster ovary cells were exposed in culture for 1 h at 37 degrees C to sodium fluoride at 7-100 mu g/ml. NaF-treated and control cells were then incubated with 0-10 mu M MMS in phosphate-buffered saline (PBS) for 15 min at 37 degrees C, or 7-100 mu M H2O2 in distilled water for 5 min on ice. Negative control cells were treated with PBS for 1 h at 37 degrees C. Clear concentration-related effects were observed for the two genotoxins. Increase of DNA damage induced by either MMS or H2O2 was not significantly altered by pretreatment with NaF. The data indicate that NaF does not modulate alkylation-induced genotoxicity or oxidative DNA damage as measured by the single-cell gel ( comet) assay. Copyright (c) 2007 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An aqueous extract of Rhizophora mangle L. bark is used as raw material in pottery making in the State of Espirito Santo, Brazil. This extract presents large quantities of tannins, compounds possessing antioxidant properties. Tannin antioxidant activity, as a plant chemical defense mechanism in the process of stabilizing free radicals, has been an incentive to studies on anti-mutagenicity. The present work aimed to evaluate possible antimutagenic activity of a R. mangle aqueous extract, using the Allium cepa test-system and micronuclear (MN) assay with blockage of cytokinesis in Chinese hamster ovary cells (CHO-K1). The Allium cepa test-system indicated antimutagenic activity against the damage induced by the mutagenic agent methyl methanesulfonate. A reduction in both MN cell frequency and chromosome breaks occurred in both the pre and post-treatment protocols. The MN testing of CHO-K1 cells revealed anti-mutagenic activity of the R. mangle extract against methyl methanesulfonate and doxorubicin in pre, simultaneous and post-treatment protocols. These results suggest the presence of phyto-constituents in the extract presenting demutagenic and bio-antimutagenic activities. Since the chemical constitution of Rhizophora mangle species presents elevated tannin content, it is highly probable that these compounds are the antimutagenic promoters themselves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. Taking into consideration that DNA damage and cellular death play important roles during carcinogenesis, the purpose of the present study was to evaluate in vitro genotoxic or cytotoxic effects of chloroform and eucalyptol by single cell gel (comet) assay and trypan blue exclusion test, respectively.Study design. Chloroform and eucalyptol were exposed to Chinese hamster ovary cells in culture directly for 3 hours at 37 degrees C at final concentrations ranging from 1.25 to 10 mu L/mL. The negative control group was treated with vehicle control (phosphate-buffered solution), and the positive control group was treated with methyl metasulfonate (MMS, at 1 mu g/mL concentration). All data were analyzed by the Kruskal-Wallis nonparametric test followed by the Dunn test.Results. The results showed that both gutta-percha solvents were cytotoxic at concentrations of 2.5, 5, and 10 mu L/mL (P < .05). on the other hand, both solvents did not induce DNA breakage at 1.25 mu L/mL concentration.Conclusions. These results suggest that both chloroform or eucalyptol are strong cytotoxicants, but they may not be a factor that increases the level of DNA lesions in mammalian cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The D allozyme of placental alkaline phosphatase (PLAP) displays enzymatic properties at variance with those of the common PLAP allozymes. We have deduced the amino acid sequence of the PLAP D allele by PCR cloning of its gene, ALPP Two coding substitutions were found in comparison With the cDNA of the common PLAP F allele, i.e., 692C>G and 1352A>G, which translate into a P209R and E429G substitution. A single nucleotide primer extension (SNuPE) assay was developed using PCR primers that enable the amplification of a 1.9 kb PLAP fragment. Extension primers were then used on this PCR fragment to detect the 692C>G and 1352A>G substitution. The SNuPE assay on these two nucleotide substitutions enabled us to distinguish the PLAP F and D alleles from the PLAP S/I alleles. Functional studies on the D allozyme were made possible by constructing and expressing a PLAP D cDNA, i.e., [Arg209, Gly429] PLAP, into wildtype Chinese hamster ovary cells. We determined the k(cat) and K-m, of the PLAP S, F. and D allozymes using the non,physiological substrate p-nitrophenylphosphate at an optimal pH (9.8) as well as two physiological substrates, i.e., pyridoxal-5'-phosphate and inorganic pyrophosphate at physiological pH (7.5). We found that the biochemical properties of the D allozyme of PLAP are significantly different from those of the common PLAP allozymes. These biochemical findings suggest that a suboptimal enzymatic function by the PLAP D allozyme may be the basis for the apparent negative selective pressure of the PLAP D allele. The development of the SNuPE assay will enable us to test the hypothesis that the PLAP D allele is subjected to intrauterine selection by examining genomic DNA from statistically informative population samples. Hum Mutat 19:258-267, 2002. (C) 2002 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An isolate of Curvularia sp. was obtained from the leaves of Ocotea corymbosa, a native plant of the Brazilian Cerrado. The ethyl acetate extract from culture of this fungus afforded two benzopyran derivatives: (2′S)-2-(propan-2′-ol)-5-hydroxy-benzopyran-4-one (2) and 2,3-dihydro-2-methyl-benzopyran-4,5-diol (4); and two known benzopyrans: 2-methyl-5-methoxy-benzopyran-4-one (1) and (2R)-2,3-dihydro-2-methyl-5-methoxy- benzopyran-4-one (3). The structures of 2 and 4 were established on the basis of comprehensive spectroscopic analysis, mainly using 1D and 2D NMR experiments. The benzopyrans 1 and 2 showed weak in vitro antifungal activity against Cladosporium sphaerospermum and C. cladosporioides. Analyses of the biological activities were also carried out on HeLa (human cervix tumor) and CHO (Chinese hamster ovary) cells, aiming to evaluate their potential effects on mammalian cell line proliferation. Results from both cell lines indicated that compound 2 was able to induce cell proliferation: 70% on HeLa cells and 25% on CHO cells. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To examine the genotoxicity and cytotoxicity of regular and white mineral trioxide aggregate (MTA) ex vivo by the single-cell gel (comet) assay and trypan blue exclusion test, respectively. Methodology: Aliquots of 1 × 10 4 Chinese hamster ovary cells were incubated at 37°C for 3 h with grey and white forms of MTA at final concentrations ranging from 1 to 1000 μg mL -1. The negative control group was treated with vehicle control phosphate buffer solution for 3 h at 37°C and the positive control group was treated with methyl metasulfonate (at 1 μg mL -1) for 1 h at 37°C. After incubation, the cells were centrifuged at 180 g for 5 min and washed twice with fresh medium and resuspended with fresh medium. Each individual treatment was repeated three times consecutively to ensure reproducibility. Parameters from single-cell gel (comet) and cytotoxicity assays were assessed by the Kruskal-Wallis nonparametric test. Results: Neither compounds produced genotoxic effects with respect to the single-cell gel (comet) assay in all concentrations evaluated. In the same way, the dose-response relationships of all compounds tested at concentrations ranging from 1 to 1000 μg mL -1 on cell viability assessed by the trypan blue assay displayed no statistically significant differences (P > 0.05) for either endodontic material. Conclusions: Regular (grey) and white MTA are not genotoxins and do not induce cellular death. © 2006 International Endodontic Journal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)