984 resultados para Green Space Wall
Resumo:
We report on the discovery of a large-scale wall in the direction of Abell 22. Using photometric and spectroscopic data from the Las Campanas Observatory and Anglo-Australian Telescope Rich Cluster Survey, Abell 22 is found to exhibit a highly unusual and striking redshift distribution. We show, by examining the galaxy distributions both in redshift space and on the colour-magnitude plane, that Abell 22 exhibits a foreground wall-like structure. A search for other galaxies and clusters in the nearby region using the 2dF Galaxy Redshift Survey data base suggests that the wall-like structure is a significant large-scale, non-virialized filament which runs between two other Abell clusters either side of Abell 22. The filament stretches over at least > 40 h(-1) Mpc in length and 10 h(-1) Mpc in width at the redshift of Abell 22.
Resumo:
The thermo-chemical conversion of green microalgae Chlamydomonas reinhardtii wild type (CCAP 11/32C), its cell wall deficient mutant C. reinhardtii CW15 (CCAP 11/32CW15) and Chlorella vulgaris (CCAP 211/11B) as well as their proteins and lipids was studied under conditions of intermediate pyrolysis. The microalgae were characterised for ultimate and gross chemical composition, lipid composition and extracted products were analysed by Thermogravimetric analysis (TG/DTG) and Pyrolysis-gaschromatography/mass-spectrometry (Py-GC/MS). Proteins accounted for almost 50% and lipids 16-22 % of dry weight of cells with little difference in the lipid compositions between the C. reinhardtii wild type and the cell wall mutant. During TGA analysis, each biomass exhibited three stages of decomposition, namely dehydration, devolatilization and decomposition of carbonaceous solids. Py-GC/MS analysis revealed significant protein derived compounds from all algae including toluene, phenol, 4-methylphenol, 1H-indole, 1H-indole-3methyl. Lipid pyrolysis products derived from C. reinhardtii wild type and C. reinhardtii CW15 were almost identical and reflected the close similarity of the fatty acid profiles of both strains. Major products identified were phytol and phytol derivatives formed from the terpenoid chain of chlorophyll, benzoic acid alkyl ester derivative, benzenedicarboxylic acid alkyl ester derivative and squalene. In addition, octadecanoic acid octyl ester, hexadecanoic acid methyl ester and hydrocarbons including heptadecane, 1-nonadecene and heneicosane were detected from C. vulgaris pyrolysed lipids. These results contrast sharply with the types of pyrolytic products obtained from terrestrial lignocellulosic feedstocks and reveal that intermediate pyrolysis of algal biomass generates a range of useful products with wide ranging applications including bio fuels.
Resumo:
Purpose: It is widely accepted that pupil responses to visual stimuli are determined by the ambient illuminance, and recently it has been shown that changes in stimulus color also contributes to a pupillary control mechanism. However, the role of pupillary responses to chromatic stimuli is not clear. The aim of this study was to investigate how color and luminance signals contribute to the pupillary control mechanism. Methods: We measured pupillary iso-response contours in M-and L-cone contrast space. The iso-response contours in cone-contrast space have been determined to examine what mechanisms contribute to the pupillary pathway. The shapes of the iso-response contour change when different mechanisms determine the response. Results: It was shown that for all subjects, the pupillary iso-response contours form an ellipse with positive slope in cone-contrast space, indicating that the sensitivities to the chromatic stimuli are higher than those for the luminance stimuli. The pupil responds maximally to a grating that has a stronger L-cone modulation than the red-green isoluminant grating. Conclusions: The sensitivity of the chromatic pathway, in terms of pupillary response, is three times larger than that of the luminance pathway, a property that might have utility in clinical applications. Copyright © Taylor & Francis Group, LLC.
Resumo:
Charles Edward Perry (Chuck), 1937-1999, was the founding president of Florida International University in Miami, Florida. He grew up in Logan County, West Virginia and received his bachelor's and masters's degrees from Bowling Green State University. He married Betty Laird in 1960. In 1969, at the age of 32, Perry was the youngest president of any university in the nation. The name of the university reflects Perry’s desire for a title that would not limit the scope of the institution and would support his vision of having close ties to Latin America. Perry and a founding corps opened FIU to 5,667 students in 1972 with only one large building housing six different schools. Perry left the office of President of FIU in 1976 when the student body had grown to 10,000 students and the university had six buildings, offered 134 different degrees and was fully accredited. Charles Perry died on August 30, 1999 at his home in Rockwall, Texas. He is buried on the FIU campus in front of the Graham Center entrance.
Resumo:
The recent invasion of the European green crab (Carcinus maenas) populations in Placentia Bay, Newfoundland and Labrador (NL) raises great concern about potential impacts on local fisheries and native biodiversity. Green crab are highly adaptable and in both native and invaded areas, green crab are well established predators that can outcompete other similarly sized decapods. The main objectives of this thesis were to: 1) identify the native species that green crab compete with for resources; 2) determine the depths and substrate types in which these interactions likely occur; 3) assess the indirect effects of green crab on native crustaceans and their changes in behavior; 4) assess the impacts of green crab on benthic community structure; 5) compare the NL population with other Atlantic Canadian populations in terms of competitive abilities; and 6) compare morphological features of the NL population with other Atlantic Canadian populations. I found that green crab overlap in space and diet with both rock crab (Cancer irroratus) and American lobster (Homarus americanus), potentially leading to a shift in habitat. Laboratory studies on naïve juvenile lobster also suggested shifts in behavior related to green crab, in that lobster decreased foraging activity and increased shelter use in the presence of green crab. Benthic community analyses showed fewer species in mud, sand, and eelgrass sites heavily populated by green crab compared to sites without green crab, although results depended on the taxa involved and I could not eliminate environmental differences through a short term caging study. Foraging ability of green crab varied in intraspecific competition experiments, with populations from NL and Prince Edward Island dominating longer-established populations from Nova Scotia and New Brunswick. Additional studies excluded claw size as a factor driving these results and behavioral differences likely reflected differences in invasion time and population genetics. Overall, green crab in Placentia Bay appear to be altering community structure of benthic invertebrates through predation and they also appear to indirectly impact native crustaceans through competition.
Resumo:
Concern for the sustainability of our planet is widespread. The ever-increasing economic activity and large scale industralisation our consumer society requires has increased concerns among academics, politicians, and consumers alike on natural resource depletion, waste management, dangers of toxic chemicals, and climate change. Human consumption is causing major issues for the space we inhabit. Much work has been done over the past four decades to remedy human impact on our environment at corporate, policy and consumer level. But concerns on our ability to progress the sustainability agenda remain. Consumer behaviour plays a pivotal role in sustainable development. In light of this, we need to explore and understand the ways in which consumption occurs in consumers lives, with an aim to changing behaviours that do not support the natural environment. Questions on how to change consumer behaviour dominate much of the literature on sustainable consumption, but substantial behaviour change among individuals has not occurred as predicted. Some focus has shifted to look at upstream interventions, such as education. The Green-Schools Programme (known internationally as Eco-Schools) is one such intervention. The aim of this thesis was to explore consumption in the context of the Green-Schools Programme. The main research question asks: in the context of the Green-Schools, how are sustainable behaviour practices developed in the home? The findings presented in this thesis show that sustainable behaviour has developed in the home from both internal and external factors, the Green-Schools effect being one such factor; the programme does influence behaviour in the home context to some degree. One of the main findings of this research indicates that schoolchildren are imparting ‘positive pester power’ on household behaviour practices and the majority of households are passively practicing sustainable consumption. These findings contribute to knowledge on sustainable consumption in the home context.
Resumo:
We report a method of growing site controlled InGaN multiple quantum discs (QDs) at uniform wafer scale on coalescence free ultra-high density (>80%) nanorod templates by metal organic chemical vapour deposition (MOCVD). The dislocation and coalescence free nature of the GaN space filling nanorod arrays eliminates the well-known emission problems seen in InGaN based visible light sources that these types of crystallographic defects cause. Correlative scanning transmission electron microscopy (STEM), energy-dispersive X-ray (EDX) mapping and cathodoluminescence (CL) hyperspectral imaging illustrates the controlled site selection of the red, yellow and green (RYG) emission at these nano tips. This article reveals that the nanorod tips' broad emission in the RYG visible range is in fact achieved by manipulating the InGaN QD's confinement dimensions, rather than significantly increasing the In%. This article details the easily controlled method of manipulating the QDs dimensions producing high crystal quality InGaN without complicated growth conditions needed for strain relaxation and alloy compositional changes seen for bulk planar GaN templates.
Resumo:
Design for visors for the delegation from Jamaica to the London Olympic Games 2012. This design was commissioned by PUMA 2012 based on McLean's designs featured in the website House of Flora, which functions as a space of display, archive, folio, point of sale and dissemination. The McLean standard design for visors is a component of the avant garde, pret a porter millinery, accessory design collections, and stylistically customised for the Jamaican team. McLean's oeuvre is original in its integration of the experimental traditions of art school workshop culture with the professional demands of fashion manufacture and trade culture. Combining the innovation of the postmodern urban artisan with the exacting demands of industrial production, dissemination and distribution McLean's design work spans the disparate worlds of national art collections such as the Victoria and Albert Museum (A Hat Anthology Exhibition, and catalogue 2009), London Design Museum ( Fifty Hats that Changed the World 2009). Integrating design considerations of multiple and mass production with the stylistic considerations of the studio workshop McLean brings the wit of the avant garde urban artisan to the structures and systems of fashion industry. The designs reach to a global audience as product users, as well as to the international connoisseurship of crafts and design specialists. The rigour of McLean's research and innovation is evident in the specificity of the stylistic references made through her selection of materials, processes, form, colour and symbolism. A range of cultural references cite the rich fusion of early twentieth century modernist culture in which the disparate worlds of popular, proletarian, culture fertilised the stylistic austerity of high modern formalism. McLean here considers the relationship between millinery and coiffure, following from the millinery piece featured in (Marcel bobbed hairpiece hat), and now brings the considerations of ethnic difference to bear on her design. Afro hair brings user group specificity to the milliner, and the visor design is a resolution of function and style for both protection and display. Connoting the sartorial conventions of workwear headgear, rather than the nineteenth century colonial 'cricketer's' cap, or the twentieth century US 'baseball' peaked cap, McLean's 'Jamaican Olympic Visor' brings distinctively postcolonial meaning to the cultural profile of the heterotopic media space. Designing for the popular culture of Olympic sports, televised and broadcast to global audiences, brings new forms of agency to the fashion designer, and McLan's design deploys a style that is widely recognisable from other popular culture's film and TV depictions of workwear to mark the distinctive tradition of supremacy that black athletes bring to the European traditions of cultural heritage. Supplanting the Arcadian 'laurels' with which winners are, traditionally, crowned, McLean's visor design innovation, suggests that it is not impossible to challenge and transform apparently timeless hierarchies of power and supremacy, so that ex-slaves may also become victors. McLean's fashion designs all work within this reach of fashion towards the carnivalesque inversion of social orderliness through play, display and sartorial activism.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Aluminium (Al) toxicity and drought are the two major abiotic stress factors limiting common bean production in the tropics. Using hydroponics, the short-term effects of combined Al toxicity and drought stress on root growth and Al uptake into the root apex were investigated. In the presence of Al stress, PEG 6000 (polyethylene glycol)-induced osmotic (drought) stress led to the amelioration of Al-induced inhibition of root elongation in the Al-sensitive genotype VAX 1. PEG 6000 (>> PEG 1000) treatment greatly decreased Al accumulation in the 1 cm root apices even when the roots were physically separated from the PEG solution using dialysis membrane tubes. Upon removal of PEG from the treatment solution, the root tips recovered from osmotic stress and the Al accumulation capacity was quickly restored. The PEG-induced reduction of Al accumulation was not due to a lower phytotoxic Al concentration in the treatment solution, reduced negativity of the root apoplast, or to enhanced citrate exudation. Also cell-wall (CW) material isolated from PEG-treated roots showed a low Al-binding capacity which, however, was restored after destroying the physical structure of the CW. The comparison of the Al(3+), La(3+), Sr(2+), and Rb(+) binding capacity of the intact root tips and the isolated CW revealed the specificity of the PEG 6000 effect for Al. This could be due to the higher hydrated ionic radius of Al(3+) compared with other cations (Al(3+) >> La(3+) > Sr(2+) > Rb(+)). In conclusion, the results provide circumstantial evidence that the osmotic stress-inhibited Al accumulation in root apices and thus reduced Al-induced inhibition of root elongation in the Al-sensitive genotype VAX 1 is related to the alteration of CW porosity resulting from PEG 6000-induced dehydration of the root apoplast.
Resumo:
Strawberry (Fragaria x ananassa, Duch.) fruit is characterized by its fast ripening and soft texture at the ripen stage, resulting in a short postharvest shelf life and high economic losses. It is generally believed that the disassembly of cell walls, the dissolution of the middle lamella and the reduction of cell turgor are the main factors determining the softening of fleshy fruits. In strawberry, several studies indicate that the solubilisation and depolymerisation of pectins, as well as the depolymerisation of xyloglucans, are the main processes occurring during ripening. Functional analyses of genes encoding pectinases such as polygalacturonase and pectate lyase also point out to the pectin fraction as a key factor involved in textural changes. All these studies have been performed with whole fruits, a complex organ containing different tissues that differ in their cell wall composition and undergo ripening at different rates. Cell cultures derived from fruits have been proposed as model systems for the study of several processes occurring during fruit ripening, such as the production of anthocyanin and its regulation by plant hormones. The main objective of this research was to obtain and characterize strawberry cell cultures to evaluate their potential use as a model for the study of the cell wall disassembly process associate with fruit ripening. Cell cultures were obtained from cortical tissue of strawberry fruits, cv. Chandler, at the stages of unripe-green, white and mature-red. Additionally, a cell culture line derived from strawberry leaves was obtained. All cultures were maintained in solid medium supplemented with 2.5 mg.l-1 2,4-D and incubated in the dark. Cell walls from the different callus lines were extracted and fractionated to obtain CDTA and sodium carbonate soluble pectin fractions, which represent polyuronides located in the middle lamella or the primary cell wall, respectively. The amounts of homogalacturonan in both fractions were estimated by ELISA using LM19 and LM20 antibodies, specific against demethylated and methyl-esterified homogalacturonan, respectively. In the CDTA fraction, the cell line from ripe fruit showed a significant lower amount of demethylated pectins than the rest of lines. By contrast, the content of methylated pectins was similar in green- and red-fruit lines, and lower than in white-fruit and leaf lines. In the sodium carbonate pectin fraction, the line from red fruit also showed the lowest amount of pectins. These preliminary results indicate that cell cultures obtained from fruits at different developmental stages differ in their cell wall composition and these differences resemble to some extent the changes that occur during strawberry softening. Experiments are in progress to further characterize cell wall extracts with monoclonal antibodies against other cell wall epitopes.
Resumo:
This research investigated annular field reversed configuration (AFRC)devices for high power electric propulsion by demonstrating the acceleration of these plasmoids using an experimental prototype and measuring the plasmoid's velocity, impulse, and energy efficiency. The AFRC plasmoid translation experiment was design and constructed with the aid of a dynamic circuit model. Two versions of the experiment were built, using underdamped RLC circuits at 10 kHz and 20 kHz. Input energies were varied from 100 J/pulse to 1000 J/pulse for the 10 kHz bank and 100 J/pulse for the 20 kHz bank. The plasmoids were formed in static gas fill of argon, from 1 mTorr to 50 mTorr. The translation of the plasmoid was accomplished by incorporating a small taper into the outer coil, with a half angle of 2°. Magnetic field diagnostics, plasma probes, and single-frame imaging were used to measure the plasmoid's velocity and to diagnose plasmoid behavior. Full details of the device design, construction, and diagnostics are provided in this dissertation. The results from the experiment demonstrated that a repeatable AFRC plasmoid was produced between the coils, yet failed to translate for all tested conditions. The data revealed the plasmoid was limited in lifetime to only a few (4-10) μs, too short for translation at low energy. A global stability study showed that the plasma suffered a radial collapse onto the inner wall early in its lifecycle. The radial collapse was traced to a magnetic pressure imbalance. A correction made to the circuit was successful in restoring an equilibrium pressure balance and prolonging radial stability by an additional 2.5 μs. The equilibrium state was sufficient to confirm that the plasmoid current in an AFRC reaches a steady-state prior to the peak of the coil currents. This implies that the plasmoid will always be driven to the inner wall, unless it translates from the coils prior to peak coil currents. However, ejection of the plasmoid before the peak coil currents results in severe efficiency losses. These results demonstrate the difficulty in designing an AFRC experiment for translation as balancing the different requirements for stability, balance, and efficient translation can have competing consequences.
Resumo:
The popularization of academic spaces that combine Buddhist philosophy with the literature of the Romantic period – a discipline I refer to as Buddhist Romantic Studies – have exposed the lack of scholarly attention Samuel Taylor Coleridge and The Rime of the Ancient Mariner have received within such studies. Validating Coleridge’s right to exist within Buddhist Romantic spheres, my thesis argues that Coleridge was cognizant of Buddhism through historical and textual encounters. To create a space for The Rime within Buddhist Romantic Studies, my thesis provides an interpretation of the poem that centers on the concept of prajna, or wisdom, as a vital tool for cultivating the mind. Focusing on prajna, I argue that the Mariner’s didactic story traces his cognitive voyage from ignorance to enlightenment. By examining The Rime within the framework of Buddhism, readers will also be able to grasp the importance of cultivating the mind and transcending ignorance.
Resumo:
Solder-joining using metallic solder alloys is an alternative to adhesive bonding. Laser-based soldering processes are especially well suited for the joining of optical components made of fragile and brittle materials such as glasses, ceramics and optical crystals due to a localized and minimized input of thermal energy. The Solderjet Bumping technique is used to assemble a miniaturized laser resonator in order to obtain higher robustness, wider thermal conductivity performance, higher vacuum and radiation compatibility, and better heat and long term stability compared with identical glued devices. The resulting assembled compact and robust green diode-pumped solid-state laser is part of the future Raman Laser Spectrometer designed for the Exomars European Space Agency (ESA) space mission 2018.
Resumo:
Nowadays the development of new Internal Combustion Engines is mainly driven by the need to reduce tailpipe emissions of pollutants, Green-House Gases and avoid the fossil fuels wasting. The design of dimension and shape of the combustion chamber together with the implementation of different injection strategies e.g., injection timing, spray targeting, higher injection pressure, play a key role in the accomplishment of the aforementioned targets. As far as the match between the fuel injection and evaporation and the combustion chamber shape is concerned, the assessment of the interaction between the liquid fuel spray and the engine walls in gasoline direct injection engines is crucial. The use of numerical simulations is an acknowledged technique to support the study of new technological solutions such as the design of new gasoline blends and of tailored injection strategies to pursue the target mixture formation. The current simulation framework lacks a well-defined best practice for the liquid fuel spray interaction simulation, which is a complex multi-physics problem. This thesis deals with the development of robust methodologies to approach the numerical simulation of the liquid fuel spray interaction with walls and lubricants. The accomplishment of this task was divided into three tasks: i) setup and validation of spray-wall impingement three-dimensional CFD spray simulations; ii) development of a one-dimensional model describing the liquid fuel – lubricant oil interaction; iii) development of a machine learning based algorithm aimed to define which mixture of known pure components mimics the physical behaviour of the real gasoline for the simulation of the liquid fuel spray interaction.