991 resultados para Graphitic carbon


Relevância:

30.00% 30.00%

Publicador:

Resumo:

CO2 adsorption has been measured in different types of graphitic nanostructures (MWCNTs, acid treated MWCNTs, graphene nanoribbons and pure graphene) in order to evaluate the effect of the different defective regions/conformations in the adsorption process, i.e., sp3 hybridized carbon, curved regions, edge defects, etc. This analysis has been performed both in pure carbon and nitrogen-doped nanostructures in order to monitor the effect of surface functional groups on surface created after using different treatments (i.e., acid treatment and thermal expansion of the MWCNTs), and study their adsorption properties. Interestingly, the presence of exposed defective regions in the acid treated nanostructures (e.g., uncapped nanotubes) gives rise to an improvement in the amount of CO2 adsorbed; the adsorption process being completely reversible. For N-doped nanostructures, the adsorption capacity is further enhanced when compared to the pure carbon nanotubes after the tubes were unzipped. The larger proportion of defect sites and curved regions together with the presence of stronger adsorbent–adsorbate interactions, through the nitrogen surface groups, explains their larger adsorption capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different types of crystalline carbon nanomaterials were used to reinforce polyaniline for use in electromechanical bilayer bending actuators. The objective is to analyze how the different graphitic structures of the nanocarbons affect and improve the in situ polymerized polyaniline composites and their subsequent actuator behavior. The nanocarbons investigated were multiwalled carbon nanotubes, nitrogen-doped carbon nanotubes, helical-ribbon carbon nanofibers and graphene oxide, each one presenting different shape and structural characteristics. Films of nanocarbon-PAni composite were tested in a liquid electrolyte cell system. Experimental design was used to select the type of nanocarbon filler and composite loadings, and yielded a good balance of electromechanical properties. Raman spectroscopy suggests good interaction between PAni and the nanocarbon fillers. Electron microscopy showed that graphene oxide dispersed the best, followed by multiwall carbon nanotubes, while nitrogen-doped nanotube composites showed dispersion problems and thus poor performance. Multiwall carbon nanotube composite actuators showed the best performance based on the combination of bending angle, bending velocity and maximum working cycles, while graphene oxide attained similarly good performance due to its best dispersion. This parallel testing of a broad set of nanocarbon fillers on PAni-composite actuators is unprecedented to the best of our knowledge and shows that the type and properties of the carbon nanomaterial are critical to the performance of electromechanical devices with other conditions remaining equal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low temperature water-gas shift (WGS) reaction has been studied over two commercial multiwall carbon nanotubes-supported nickel catalysts promoted by ceria. For comparison purposes, activated carbon-supported catalysts have also been studied. The catalytic performance and the characterization by N2 adsorption analysis, powder X-ray diffraction (XRD), temperature-programmed reduction with H2 (TPR-H2), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analysis showed that the surface chemistry has an important effect on the dispersion of ceria. As a result, ceria was successfully dispersed over the carbon nanotubes (CNTs) with less graphitic character, and the catalyst afforded better activity in WGS than the catalyst prepared over massive ceria. Moreover, a 20 wt.% CeO2 loading over this support was more active than the analogous catalyst with a 40 wt.% loading. The ceria nanoparticles were smaller when the support was previously oxidized, however this resulted in a decrease of the activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel procedure for the preparation of solid Pd(II)-based catalysts consisting of the anchorage of designed Pd(II)-complexes on an activated carbon (AC) surface is reported. Two molecules of the Ar–S–F type (where Ar is a plane-pyrimidine moiety, F a Pd(II)-ligand and S an aliphatic linker) differing in F, were grafted on AC by π–π stacking of the Ar moiety and the graphene planes of the AC, thus favouring the retaining of the metal-complexing ability of F. Adsorption of Pd(II) by the AC/Ar–S–F hybrids occurs via Pd(II)-complexation by F. After deep characterization, the catalytic activities of the AC/Ar–S–F/Pd(II) hybrids on the hydrogenation of 1-octene in methanol as a catalytic test were evaluated. 100% conversion to n-octane at T = 323.1 K and P = 15 bar, was obtained with both catalysts and most of Pd(II) was reduced to Pd(0) nanoparticles, which remained on the AC surface. Reusing the catalysts in three additional cycles reveals that the catalyst bearing the F ligand with a larger Pd-complexing ability showed no loss of activity (100% conversion to n-octane) which is assigned to its larger structural stability. The catalyst with the weaker F ligand underwent a progressive loss of activity (from 100% to 79% in four cycles), due to the constant aggregation of the Pd(0) nanoparticles. Milder conditions, T = 303.1 K and P = 1.5 bar, prevent the aggregation of the Pd(0) nanoparticles in this catalyst allowing the retention of the high catalytic efficiency (100% conversion) in four reaction cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid magnetic graphitic nanocomposites (MGNC) prepared by inclusion of magnetite nanoparticles (obtained by coprecipitation) into an organic-organic self-assembly system, followed by calcination, revealed high activity for the catalytic wet peroxide oxidation (CWPO) of 4-nitrophenol solutions (5 g L-l), with pollutant removais up to 1245 mg g-' h-l being obtained when considering the mass ratio [pollutant]/[catalyst] =10. The stability of the MGNC catalyst against metal leaching was ascribed to the confinement effect of the carbon based material. These observations, together with the magnetically recoverable characteristics of MGNC, open new prospects for the wide use of this catalyst in highly efficient CWPO applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diffraction pattern of Fe3O4 (not shown) confirmed the presence of only one phase, corresponding to magnetite with a lattice parameter a = 8.357 Å and a crystallite size of 16.6 ± 0.2 nm. The diffraction pattern of MGNC (not shown) confirmed the presence of a graphitic phase, in addition to the metal phase, suggesting that Fe3O4 nanoparticles were successfully encapsulated within a graphitic structure during the synthesis of MGNC. The core-shell structure of MGNC is unequivocally demonstrated in the TEM micrograph shown in Fig. 1b. Characterization of the MGNC textural and surface chemical properties revealed: (i) stability up to 400 oC under oxidizing atmosphere; (ii) 27.3 wt.% of ashes (corresponding to the mass fraction of Fe3O4); (iii) a micro-mesoporous structure with a fairly well developed specific surface area (SBET = 330 m2 g-1); and (iv) neutral character (pHPZC = 7.1). In addition, the magnetic nature of MGNC (Fig. 2) is an additional advantage for possible implementation of in situ magnetic separation systems for catalyst recovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we evaluate the performance of the 1- and 5-site models of methane on the description of adsorption on graphite surfaces and in graphitic slit pores. These models have been known to perform well in the description of the fluid-phase behavior and vapor-liquid equilibria. Their performance in adsorption is evaluated in this work for nonporous graphitized thermal carbon black, and simulation results are compared with the experimental data of Avgul and Kiselev (Chemistry and Physics of Carbon; Dekker: New York, 1970; Vol. 6, p 1). On this nonporous surface, it is found that these models perform as well on isotherms at various temperatures as they do on the experimental isosteric heat for adsorption on a graphite surface. They are then tested for their performance in predicting the adsorption isotherms in graphitic slit pores, in which we would like to explore the effect of confinement on the molecule packing. Pore widths of 10 and 20 angstrom are chosen in this investigation, and we also study the effects of temperature by choosing 90.7, 113, and 273 K. The first two are for subcritical conditions, with 90.7 K being the triple point of methane and 113 K being its boiling point. The last temperature is chosen to represent the supercritical condition so that we can investigate the performance of these models at extremely high pressures. We have found that for the case of slit pores investigated in this paper, although the two models yield comparable pore densities (provided the accessible pore width is used in the calculation of pore density), the number of particles predicted by the I-site model is always greater than that predicted by the 5-site model, regardless of whether temperature is subcritical or supercritical. This is due to the packing effect in the confined space such that a methane molecule modeled as a spherical particle in the I-site model would pack better than the fused five-sphere model in the case of the 5-site model. Because the 5-site model better describes the liquid- and solid-phase behavior, we would argue that the packing density in small pores is better described with a more detailed 5-site model, and care should be exercised when using the 1-site model to study adsorption in small pores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grand canonical Monte Carlo simulations were applied to the adsorption of SPCE model water in finite graphitic pores with different configurations of carbonyl functional groups on only one surface and several pore sizes. It was found that almost all finite pores studied exhibit capillary condensation behaviour preceded by adsorption around the functional groups. Desorption showed the reverse transitions from a filled to a near empty pore resulting in a clear hysteresis loop in all pores except for some of the configurations of the 1.0nm pore. Carbonyl configurations had a strong effect on the filling pressure of all pores except, in some cases, in 1.0nm pores. A decrease in carbonyl neighbour density would result in a higher filling pressure. The emptying pressure was negligibly affected by the configuration of functional groups. Both the filling and emptying pressures increased with increasing pore size but the effect on the emptying pressure was much less. At pressures lower than the pore filling pressure, the adsorption of water was shown to have an extremely strong dependence on the neighbour density with adsorption changing from Type IV to Type III to linear as the neighbour density decreased. The isosteric heat was also calculated for these configurations to reveal its strong dependence on the neighbour density. These results were compared with literature experimental results for water and carbon black and found to qualitatively agree.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is dedicated to the production and analysis of thin hydrogenated amorphous carbon films. A cascaded arc plasma source was used to produce a high density plasma of hydrocarbon radicals that deposited on a substrate at ultra low energies. The work was intended to create a better understanding of the mechanisms responsible for the film formation, by an extensive analysis on the properties of the films in correlation with the conditions used in the plasma cell. Two different precursors were used: methane and acetylene. They revealed a very different picture for the mechanism of film formation and properties. Methane was less successful, and the films formed were soft, with poor adhesion to the substrate and decomposing with time. Acetylene was the better option, and the films formed in this case were harder, with better adhesion to the substrate and stable over time. The plasma parameters could be varied to change the character of films, from polymer-like to diamond-like carbon. Films deposited from methane were grown at low deposition rates, which increased with the increase in process pressure and source power and decreased with the increase in substrate temperature and in hydrogen fraction in the carrier gas. The films had similar hydrogen content, sp3 fractions, average roughness (Ra) and low hardness. Above a deposition temperature of 350°C graphitization occurred - an increase in the sp2 fraction. A deposition mechanism was proposed, based upon the reaction product of the dissociative recombination of CH4+. There were small differences between the chemistries in the plasma at low and high precursor flow rates and low and high substrate temperatures; all experimental conditions led to formation of films that were either polymer-like, soft amorphous hydrogenated carbon or graphitic-like in structure. Films deposited from acetylene were grown at much higher deposition rates on different substrates (silicon, glass and plastics). The film quality increased noticeably with the increase of relative acetylene to argon flow rate, up to a certain value, where saturation occurred. With the increase in substrate temperature and the lowering of the acetylene injection ring position further improvements in film quality were achieved. The deposition process was scaled up to large area (5 x 5 cm) substrates in the later stages of the project. A deposition mechanism was proposed, based upon the reaction products of the dissociative recombination of C2H2 +. There were large differences between the chemistry in the plasma at low and medium/high precursor flow rates. This corresponded to large differences in film properties from low to medium flow rates, when films changed their character from polymer-like to diamond-like, whereas the differences between films deposited at medium and high precursor flow rates were small. Modelling of the film growth on silicon substrates was initiated and it explained the formation of sp2 and sp3 bonds at these very low energies. However, further improvements to the model are needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon is a versatile material which is composed of different allotropes, and also come in with different structures. Carbon nanofibres (CNFs) is one dimensional carbon nanomaterials, which have exhibited superior mechanical properties, great specific area, good electrical conductivity, good biocompatibility, and ease of modification. In addition to the lower cost associated to compare with carbon nanotubes (CNTs), CNFs have been attracted in numerous applications, such as reinforcement materials, filtrations, Li-ion battery, supercapacitor as well as tissue engineering, just to list a few. Therefore, it is a great deal to understand the relationship between the fabrication conditions and the characteristics of the resulted CNFs. In this project, electrospun PAN NFs were used as precursor material to fabricate carbon nanofibres. In order to produce CNFs with good morphology, the processing parameters of PAN nanofibres by electrospinning was optimized toward to the morphology at solution concentration of 12 wt%. The optimized processing parameters at given concentration were 16 kV, 14 cm and 1.5 mL/h, which led to the formation of PAN NFs with average fibre diameter of approximately 260 nm. Along with the effect of processing parameter study, the effect of concentration on the morphology was also carried out at optimized processing parameters. It was found that by increasing concentration of PAN solution from 2 to 16%, the resulted PAN transformed from beads only, to beaded fibres and finally to smooth fibres. With further increasing concentration the morphology of smooth fibres remain with increase in the fibre diameter. Electrospun PAN NFs with average fibre of 306 nm was selected to be converted into CNFs by using standard heating procedures, stabilisation in air at 280 °C and carbonization in N2. The effect of carbonization temperature ranging from 500 to 1000 °C was investigated, by using SEM, FTIR, Raman, and Impedance spectroscopy. With increasing carbonization temperature from 500 to 1000 °C, the diameter of NFs was decreased from 260 to 187, associated with loss of almost all functional groups of NFs. It was indicated by Raman results, that the graphitic crystallite size was increased from 2.62 to 5.24 nm, and the activation energy obtained for this growth was 7570 J/mol. Furthermore, impedance results (i.e. Cole-Cole plot) revealed that the electrical characteristic of CNFs transitioned from being insulating to electrically conducting in nature, suggested by the different electrical circuits extracted from Cole-Cole plots with carbonization temperature from 500 to 800 °C. The carbonization on PAN NFs with diameter of ~431nm was carried out by using novel route, microwave plasma enhance chemical vapour deposition (MPECVD) process. To compare with carbonized PAN NFs by using conventional route, MPECVD was not only able to facilitate carbonization process, but more interestingly can form carbon nanowalls (CNWs) grown on the surfaces of carbonized PAN NFs. Suggested by the unique morphology, the potential applications for the resulted carbon fibrous hybrid materials are supercapacitor electrode material, filtrations, and etc., The method developed in this project required one step less, compared with other literature. Therefore, using MPECVD on stabilised PAN NFs is proposed as economical, and straightforward approach towards mass production of carbon fibrous hybrid materials containing CNWs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The incorporation of graphitic compounds such as carbon nanotubes (CNTs) and graphene into nano-electronic device packaging holds much promise for waste heat management given their high thermal conductivities. However, as these graphitic materials must be used in together with other semiconductor/insulator materials, it is not known how thermal transport is affected by the interaction. Using different simulation techniques, in this thesis, we evaluate the thermal transport properties - thermal boundary conductance (TBC) and thermal conductivity - of CNTs and single-layer graphene in contact with an amorphous SiO2 (a-SiO2) substrate. First, the theoretical methodologies and concepts used in our simulations are presented. In particular, two concepts are described in detail as they are necessary for the understanding of the subsequent chapters. The first is the linear response Green-Kubo (GK) theory of thermal boundary conductance (TBC), which we develop in this thesis, and the second is the spectral energy density method, which we use to directly compute the phonon lifetimes and thermal transport coefficients. After we set the conceptual foundations, the TBC of the CNT-SiO2 interface is computed using non- equilibrium molecular dynamics (MD) simulations and the new Green-Kubo method that we have developed. Its dependence on temperature, the strength of the interaction with the substrate, and tube diameter are evaluated. To gain further insight into the phonon dynamics in supported CNTs, the scattering rates are computed using the spectral energy density (SED) method. With this method, we are able to distinguish the different scattering mechanisms (boundary and CNT-substrate phonon-phonon) and rates. The phonon lifetimes in supported CNTs are found to be reduced by contact with the substrate and we use that lifetime reduction to determine the change in CNT thermal conductivity. Next, we examine thermal transport in graphene supported on SiO2. The phonon contribution to the TBC of the graphene-SiO2 interface is computed from MD simulations and found to agree well with experimentally measured values. We derive the theory of remote phonon scattering of graphene electrons and compute the heat transfer coefficient dependence on doping level and temperature. The thermal boundary conductance from remote phonon scattering is found to be an order of magnitude smaller than that of the phonon contribution. The in-plane thermal conductivity of supported graphene is calculated from MD simulations. The experimentally measured order of magnitude reduction in thermal conductivity is reproduced in our simulations. We show that this reduction is due to the damping of the flexural (ZA) modes. By varying the interaction between graphene and the substrate, the ZA modes hybridize with the substrate Rayleigh modes and the dispersion of the hybridized modes is found to linearize in the strong coupling limit, leading to an increased thermal conductance in the composite structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work we have studied the effect of carbon supports with different graphitic character (carbon nanotubes, mesoporous graphite and activated carbon) on the catalytic performance of iridium nanoparticles on the liquid phase chemoselective hydrogenation of para-chloronitrobenzene at room temperature. The effect of the oxygen groups was also evaluated by oxidizing a portion of the carbon nanotubes. The Raman and XRD spectra showed that the mesoporous graphite displayed the strongest graphitic character. The characterization of the catalysts by HR-TEM, XPS and TPR-H2, showed that the catalysts had similar particle size and that the catalysts prepared over the previously oxidized support, Ir/CNTox, was not fully reduced. The activity and selectivity achieved with the catalyst Ir/CNT was the best among the samples and the presence of irdium oxide on Ir/CNTox diminished the yield to p-chloroaniline, being the worse catalyst. The reactivity of different isomers was also studied over Ir/CNT and it followed the order m > o > p.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a multi-wavelength Raman spectroscopy study of the structural changes along the thermal annealing pathway of a poly(furfuryl alcohol) (PFA) derived nanoporous carbon (NPC). The Raman spectra were deconvoluted utilizing G, D, D′, A and TPA bands. The appropriateness of these deconvolutions was confirmed via recovery of the correct dispersive behaviours of these bands. It is proposed that the ID/IG ratio is composed of two parts: one associated with the extent of graphitic crystallites (the Tuinstra–Koenig relationship), and a second related to the inter-defect distance. This model was used to successfully determine the variation of the in-plane size and intra-plane defect density along the annealing pathway. It is proposed that the NPC skeleton evolves along the annealing pathway in two stages: below 1600 °C it was dominated by a reduction of in-plane defects with a minor crystallite growth, and above this temperature growth of the crystallites accelerates as the in-plane defect density approaches zero. A significant amount of transpolyacetylene (TPA)-like structures was found to be remaining even at 2400 °C. These may be responsible for resistance to further graphitization of the PFA-based carbon at higher temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Until now, it has been a challenge both in experiment and in theory to design new superhard materials with high hardness values that are comparable to that of diamond. Here, by using first-principles calculations, we have introduced two new phases for a carbon-rich C-N compound with stoichiometry C3N, which is predicted to be energetically stable or metastable with respect to graphite and solid N2 at ambient pressure. It is found that C3N has a layered structure containing graphitic layers sandwiched with freely rotated N2 molecules. The layer-structured C3N is calculated to transform into a three-dimensional C2221 structure at 9 GPa with sp3-hybridized C atoms and sp2-hybridized N atoms. Phonon dispersion and elastic constant calculations reveal the dynamical and mechanical stability of the C2221 phase of C3N at ambient pressure. Significantly, first-principles ideal strength calculations indicate that the C2221 phase of C3N is a superhard material with an estimated Vickers hardness (∼76 GPa) comparable to that of diamond (60-120 GPa). The present results shed strong light on designing new superhard materials in the C-N system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract The development of innovative carbon-based materials can be greatly facilitated by molecular modeling techniques. Although the Reax Force Field (ReaxFF) can be used to simulate the chemical behavior of carbon-based systems, the simulation settings required for accurate predictions have not been fully explored. Using the ReaxFF, molecular dynamics (MD) simulations are used to simulate the chemical behavior of pure carbon and hydrocarbon reactive gases that are involved in the formation of carbon structures such as graphite, buckyballs, amorphous carbon, and carbon nanotubes. It is determined that the maximum simulation time step that can be used in MD simulations with the ReaxFF is dependent on the simulated temperature and selected parameter set, as are the predicted reaction rates. It is also determined that different carbon-based reactive gases react at different rates, and that the predicted equilibrium structures are generally the same for the different ReaxFF parameter sets, except in the case of the predicted formation of large graphitic structures with the Chenoweth parameter set under specific conditions.