958 resultados para Graphical User Interfaces
Resumo:
Le succès commercial des jeux vidéo nous montre qu’ils sont devenus une alternative non négligeable en matière de loisir et de divertissement. En observant les tendances, on constate que les concepteurs de jeux vidéo cherchent à transposer ou adapter les loisirs comme la danse, l’interprétation de la musique ou la pratique d’un sport dans le contexte de jeux vidéo (l’univers virtuel) et ceci est devenu encore plus évident depuis l’apparition des nouvelles technologies intégrant le mouvement comme mode d'interaction. En rapport aux activités dont les jeux vidéo s’inspirent, ces tendances entraînent des changements considérables sur l’aspect formel de l’activité ludique et notamment l’interaction. Dans le cas particulier du tennis de table, ou ping-pong dans le langage courant, il semble y avoir des différences en terme de plaisir lors de la pratique de ce loisir de façon traditionnelle ou en mode virtuel dans ses différentes adaptations. Le but de cette recherche est de mettre en évidence les différences entre l’appréciation de l’interaction avec le contrôleur multifonctionnel Wiimote et une raquette traditionnelle de ping-pong et de découvrir les implications sur l’expérience du plaisir de la transposition du jeu ping-pong traditionnel comparé aux adaptations sur la console Wii. Ainsi, en regard du CLASSIC GAME MODEL de Juul (2005) et du modèle THE FOUR FUN KEYS de Lazzaro (2008) nous comparons les deux modes d’interaction, jeu traditionnel avec le jeu virtuel, sur le plan formel du jeu et sur les dimensions du plaisir que chacun procure. Les résultats obtenus par l’observation des tests de jeu et l’entremise des autres outils permettent de souligner le rôle déterminant des interfaces dans l’engagement des joueurs et de montrer les limites des interfaces digitales par rapport à celle des jeux traditionnels.
Resumo:
This paper presents a Graphical User Interface, developed with python and the graphic library wxpython, to GRASS GIS. This GUI allows to access several modules with a graphic interface written in Spanish. Its main purpouse is to be a teaching tool, that is the reason way it only allows to access several basic put crucial moludes. It also allows user to organize the elements presented to stress the aspects to be resalted in a particular working sesion with the program
Resumo:
The proposal presented in this thesis is to provide designers of knowledge based supervisory systems of dynamic systems with a framework to facilitate their tasks avoiding interface problems among tools, data flow and management. The approach is thought to be useful to both control and process engineers in assisting their tasks. The use of AI technologies to diagnose and perform control loops and, of course, assist process supervisory tasks such as fault detection and diagnose, are in the scope of this work. Special effort has been put in integration of tools for assisting expert supervisory systems design. With this aim the experience of Computer Aided Control Systems Design (CACSD) frameworks have been analysed and used to design a Computer Aided Supervisory Systems (CASSD) framework. In this sense, some basic facilities are required to be available in this proposed framework: ·
Resumo:
Resource monitoring in distributed systems is required to understand the 'health' of the overall system and to help identify particular problems, such as dysfunctional hardware or faulty system or application software. Monitoring systems such as GridRM provide the ability to connect to any number of different types of monitoring agents and provide different views of the system, based on a client's particular preferences. Web 2.0 technologies, and in particular 'mashups', are emerging as a promising technique for rapidly constructing rich user interfaces, that combine and present data in intuitive ways. This paper describes a Web 2.0 user interface that was created to expose resource data harvested by the GridRM resource monitoring system.
Resumo:
Spatial memory is important for locating objects in hierarchical data structures, such as desktop folders. There are, however, some contradictions in literature concerning the effectiveness of 3D user interfaces when compared to their 2D counterparts. This paper uses a task-based approach in order to investigate the effectiveness of adding a third dimension to specific user tasks, i.e. the impact of depth on navigation in a 3D file manager. Results highlight issues and benefits of using 3D interfaces for visual and verbal tasks, and introduces the possible existence of a correlation between aptitude scores achieved on the Guilford- Zimmerman Orientation Survey and Electroencephalography- measured brainwave activity as participants search for targets of variable perceptual salience in 2D and 3D environments.
Resumo:
TESSA is a toolkit for experimenting with sensory augmentation. It includes hardware and software to facilitate rapid prototyping of interfaces that can enhance one sense using information gathered from another sense. The toolkit contains a range of sensors (e.g. ultrasonics, temperature sensors) and actuators (e.g. tactors or stereo sound), designed modularly so that inputs and outputs can be easily swapped in and out and customized using TESSA’s graphical user interface (GUI), with “real time” feedback. The system runs on a Raspberry Pi with a built-in touchscreen, providing a compact and portable form that is amenable for field trials. At CHI Interactivity, the audience will have the opportunity to experience sensory augmentation effects using this system, and design their own sensory augmentation interfaces.
Resumo:
The software development processes proposed by the most recent approaches in Software Engineering make use old models. UML was proposed as the standard language for modeling. The user interface is an important part of the software and has a fundamental importance to improve its usability. Unfortunately the standard UML does not offer appropriate resources to model user interfaces. Some proposals have already been proposed to solve this problem: some authors have been using models in the development of interfaces (Model Based Development) and some proposals to extend UML have been elaborated. But none of them considers the theoretical perspective presented by the semiotic engineering, that considers that, through the system, the designer should be able to communicate to the user what he can do, and how to use the system itself. This work presents Visual IMML, an UML Profile that emphasizes the aspects of the semiotic engineering. This Profile is based on IMML, that is a declarative textual language. The Visual IMML is a proposal that aims to improve the specification process by using a visual modeling (using diagrams) language. It proposes a new set of modeling elements (stereotypes) specifically designed to the specification and documentation of user interfaces, considering the aspects of communication, interaction and functionality in an integrated manner
Resumo:
This paper presents a NCAP embedded on DE2 kit with Nios II processor and uClinux to development of a network gateway with two interfaces, wireless (ZigBee) and wired (RS232) based on IEEE 1451. Both the communications, wireless and wired, were developed to be point-to-point and working with the same protocols, based on IEEE 1451.0-2007. The tests were made using a microcomputer, which through of browser was possible access the web page stored in the DE2 kit and send commands of control and monitoring to both TIMs (WTIM and STIM). The system describes a different form of development of the NCAP node to be applied in different environments with wired or wireless in the same node. © 2011 IEEE.
Resumo:
Abstract Background Several mathematical and statistical methods have been proposed in the last few years to analyze microarray data. Most of those methods involve complicated formulas, and software implementations that require advanced computer programming skills. Researchers from other areas may experience difficulties when they attempting to use those methods in their research. Here we present an user-friendly toolbox which allows large-scale gene expression analysis to be carried out by biomedical researchers with limited programming skills. Results Here, we introduce an user-friendly toolbox called GEDI (Gene Expression Data Interpreter), an extensible, open-source, and freely-available tool that we believe will be useful to a wide range of laboratories, and to researchers with no background in Mathematics and Computer Science, allowing them to analyze their own data by applying both classical and advanced approaches developed and recently published by Fujita et al. Conclusion GEDI is an integrated user-friendly viewer that combines the state of the art SVR, DVAR and SVAR algorithms, previously developed by us. It facilitates the application of SVR, DVAR and SVAR, further than the mathematical formulas present in the corresponding publications, and allows one to better understand the results by means of available visualizations. Both running the statistical methods and visualizing the results are carried out within the graphical user interface, rendering these algorithms accessible to the broad community of researchers in Molecular Biology.
Resumo:
Matita (that means pencil in Italian) is a new interactive theorem prover under development at the University of Bologna. When compared with state-of-the-art proof assistants, Matita presents both traditional and innovative aspects. The underlying calculus of the system, namely the Calculus of (Co)Inductive Constructions (CIC for short), is well-known and is used as the basis of another mainstream proof assistant—Coq—with which Matita is to some extent compatible. In the same spirit of several other systems, proof authoring is conducted by the user as a goal directed proof search, using a script for storing textual commands for the system. In the tradition of LCF, the proof language of Matita is procedural and relies on tactic and tacticals to proceed toward proof completion. The interaction paradigm offered to the user is based on the script management technique at the basis of the popularity of the Proof General generic interface for interactive theorem provers: while editing a script the user can move forth the execution point to deliver commands to the system, or back to retract (or “undo”) past commands. Matita has been developed from scratch in the past 8 years by several members of the Helm research group, this thesis author is one of such members. Matita is now a full-fledged proof assistant with a library of about 1.000 concepts. Several innovative solutions spun-off from this development effort. This thesis is about the design and implementation of some of those solutions, in particular those relevant for the topic of user interaction with theorem provers, and of which this thesis author was a major contributor. Joint work with other members of the research group is pointed out where needed. The main topics discussed in this thesis are briefly summarized below. Disambiguation. Most activities connected with interactive proving require the user to input mathematical formulae. Being mathematical notation ambiguous, parsing formulae typeset as mathematicians like to write down on paper is a challenging task; a challenge neglected by several theorem provers which usually prefer to fix an unambiguous input syntax. Exploiting features of the underlying calculus, Matita offers an efficient disambiguation engine which permit to type formulae in the familiar mathematical notation. Step-by-step tacticals. Tacticals are higher-order constructs used in proof scripts to combine tactics together. With tacticals scripts can be made shorter, readable, and more resilient to changes. Unfortunately they are de facto incompatible with state-of-the-art user interfaces based on script management. Such interfaces indeed do not permit to position the execution point inside complex tacticals, thus introducing a trade-off between the usefulness of structuring scripts and a tedious big step execution behavior during script replaying. In Matita we break this trade-off with tinycals: an alternative to a subset of LCF tacticals which can be evaluated in a more fine-grained manner. Extensible yet meaningful notation. Proof assistant users often face the need of creating new mathematical notation in order to ease the use of new concepts. The framework used in Matita for dealing with extensible notation both accounts for high quality bidimensional rendering of formulae (with the expressivity of MathMLPresentation) and provides meaningful notation, where presentational fragments are kept synchronized with semantic representation of terms. Using our approach interoperability with other systems can be achieved at the content level, and direct manipulation of formulae acting on their rendered forms is possible too. Publish/subscribe hints. Automation plays an important role in interactive proving as users like to delegate tedious proving sub-tasks to decision procedures or external reasoners. Exploiting the Web-friendliness of Matita we experimented with a broker and a network of web services (called tutors) which can try independently to complete open sub-goals of a proof, currently being authored in Matita. The user receives hints from the tutors on how to complete sub-goals and can interactively or automatically apply them to the current proof. Another innovative aspect of Matita, only marginally touched by this thesis, is the embedded content-based search engine Whelp which is exploited to various ends, from automatic theorem proving to avoiding duplicate work for the user. We also discuss the (potential) reusability in other systems of the widgets presented in this thesis and how we envisage the evolution of user interfaces for interactive theorem provers in the Web 2.0 era.
Resumo:
This article deals with embodied user interfaces for handheld augmented reality games, which consist of both physical and virtual components. We have developed a number of spatial interaction techniques that optically capture the device's movement and orientation relative to a visual marker. Such physical interactions in 3-D space enable manipulative control of mobile games. In addition to acting as a physical controller that recognizes multiple game-dependent gestures, the mobile device augments the camera view with graphical overlays. We describe three game prototypes that use ubiquitous product packaging and other passive media as backgrounds for handheld augmentation. The prototypes can be realized on widely available off-the-shelf hardware and require only minimal setup and infrastructure support.
Resumo:
SSR es el acrónimo de SoundScape Renderer (tool for real-time spatial audio reproduction providing a variety of rendering algorithms), es un programa escrito en su mayoría en C++. El programa permite al usuario escuchar tanto sonidos grabados con anterioridad como sonidos en directo. El sonido o los sonidos se oirán, desde el punto de vista del oyente, como si el sonido se produjese en el punto que el programa decida, lo interesante de este proyecto es que el sonido podrá cambiar de lugar, moverse, etc. Todo en tiempo real. Esto se consigue sin modificar el sonido al grabarlo pero sí al emitirlo, el programa calcula las variaciones necesarias para que al emitir el sonido al oyente le llegue como si el sonido realmente se generase en un punto del espacio o lo más parecido posible. La sensación de movimiento no deja de ser el punto anterior cambiando de lugar. La idea era crear una aplicación web basada en Canvas de HTML5 que se comunicará con esta interfaz de usuario remota. Así se solucionarían todos los problemas de compatibilidad ya que cualquier dispositivo con posibilidad de visualizar páginas web podría correr una aplicación basada en estándares web, por ejemplo un sistema con Windows o un móvil con navegador. El protocolo debía de ser WebSocket porque es un protocolo HTML5 y ofrece las “garantías” de latencia que una aplicación con necesidades de información en tiempo real requiere. Nos permite una comunicación full-dúplex asíncrona sin mucho payload que es justo lo que se venía a evitar al no usar polling normal de HTML. El problema que surgió fue que la interfaz de usuario de red que tenía el programa no era compatible con WebSocket debido a un handshacking inicial y obligatorio que realiza el protocolo, por lo que se necesitaba otra interfaz de red. Se decidió entonces cambiar a JSON como formato para el intercambio de mensajes. Al final el proyecto comprende no sólo la aplicación web basada en Canvas sino también un servidor funcional y la definición de una nueva interfaz de usuario de red con su protocolo añadido. ABSTRACT. This project aims to become a part of the SSR tool to extend its capabilities in the field of the access. SSR is an acronym for SoundScape Renderer, is a program mostly written in C++ that allows you to hear already recorded or live sound with a variety of sound equipment as if the sound came from a desired place in the space. Like the web-page of the SSR says surely better explained: “The SoundScape Renderer (SSR) is a tool for real-time spatial audio reproduction providing a variety of rendering algorithms.” The application can be used with a graphical interface written in Qt but has also a network interface for external applications to use it. This network interface communicates using XML messages. A good example of it is the Android client. This Android client is already working. In order to use the application should be run it by loading an audio source and the wanted environment so that the renderer knows what to do. In that moment the server binds and anyone can use the network interface. Since the network interface is documented everyone can make an application to interact with this network interface. So the application can have as many user interfaces as wanted. The part that is developed in this project has nothing to do neither with audio rendering nor even with the reproduction of the spatial audio. The part that is developed here is about the interface used in the SSR application. As it can be deduced from the title: “Distributed Web Interface for Real-Time Spatial Audio Reproduction System”, this work aims only to offer the interface via web for the SSR (“Real-Time Spatial Audio Reproduction System”). The idea is not to make a new graphical interface for SSR but to allow more types of interfaces and communication. To accomplish the objective of allowing more graphical interfaces this project is going to use a new network interface. By now the SSR application is using only XML for data interchange but this new network interface support JSON. This project comprehends the server that launch the application, the user interface and the new network interface. It is done with these modules in order to allow creating new user interfaces that can communicate with the server or new servers that can communicate with the user interface by defining a complete network interface for data interchange.
Resumo:
People in industrial societies carry more and more portable electronic devices (e.g., smartphone or console) with some kind of wireles connectivity support. Interaction with auto-discovered target devices present in the environment (e.g., the air conditioning of a hotel) is not so easy since devices may provide inaccessible user interfaces (e.g., in a foreign language that the user cannot understand). Scalability for multiple concurrent users and response times are still problems in this domain. In this paper, we assess an interoperable architecture, which enables interaction between people with some kind of special need and their environment. The assessment, based on performance patterns and antipatterns, tries to detect performance issues and also tries to enhance the architecture design for improving system performance. As a result of the assessment, the initial design changed substantially. We refactorized the design according to the Fast Path pattern and The Ramp antipattern. Moreover, resources were correctly allocated. Finally, the required response time was fulfilled in all system scenarios. For a specific scenario, response time was reduced from 60 seconds to less than 6 seconds.
Resumo:
El proyecto fin de carrera de herramienta de apoyo a la docencia en Sistemas Operativos quiere ayudar al alumno a entender el funcionamiento de un planificador a corto plazo. Lo hace mediante una representación gráfica de procesos que ocupan o el procesador o distintas unidades de entrada/salida mientras transcurre el tiempo. El tiempo está dividido en ciclos de reloj de un procesador, a lo que a continuación se referirá como unidades de tiempo. Los procesos están definidos por su nombre, la instante de entrada que entran al sistema, su prioridad y la secuencia de unidades de tiempo en el procesador y unidades de entrada/salida que necesitan para terminar su trabajo. El alumno puede configurar el sistema a su gusto en cuanto al número y comportamiento de las unidades de entrada/salida. Puede definir que una unidad solo permita acceso exclusivo a los procesos, es decir que solo un proceso puede ocuparla simultáneamente, o que permita el acceso múltiple a sus recursos. El alumno puede construir un planificador a corto plazo propio, integrarlo en el sistema y ver cómo se comporta. Se debe usar la interfaz Java proporcionada para su construcción. La aplicación muestra datos estadísticos como por ejemplo la eficiencia del sistema (el tiempo activo de la CPU dividido por el tiempo total de la simulación), tiempos de espera de los procesos, etc. Se calcula después de cada unidad de tiempo para que el alumno pueda ver el momento exacto donde la simulación tomó un giro inesperado. La aplicación está compuesta por un motor de simulación que contiene toda la lógica y un conjunto de clases que forman la interfaz gráfica que se presenta al usuario. Estos dos componentes pueden ser reemplazados siempre y cuando se mantenga la definición de sus conectores igual. La aplicación la he hecho de manejo muy simple e interfaz fácil de comprender para que el alumno pueda dedicar todo su tiempo a probar distintas configuraciones y situaciones y así entender mejor la asignatura. ABSTRACT. The project is called “Tool to Support Teaching of the Subject Operating Systems” and is an application that aims to help students understand on a deeper level the inner workings of how an operating system handles multiple processes in need of CPU time by the means of a short-term planning algorithm. It does so with a graphical representation of the processes that occupy the CPU and different input/output devices as time passes by. Time is divided in CPU cycles, from now on referred to as time units. The processes are defined by their name, the moment they enter the system, their priority and the sequence of time units they need to finish their job. The student can configure the system by changing the number and behavior of the input/output devices. He or she can define whether a device should only allow exclusive access, i.e. only one process can occupy it at any given time, or if it should allow multiple processes to access its resources. The student can build a planning algorithm of his or her own and easily integrate it into the system to see how it behaves. The provided Java interface and the programming language Java should be used to build it. The application shows statistical data, e.g. the efficiency of the system (active CPU time divided by total simulation time) and time spent by the processes waiting in queues. The data are calculated after passing each time unit in order for the student to see the exact moment where the simulation took an unexpected turn. The application is comprised of a simulation motor, which handles all the logic, and a set of classes, which is the graphical user interface. These two parts can be replaced individually if the definition of the connecting interfaces stays the same. I have made the application to be very easy to use and with an easy to understand user interface so the student can spend all of his or her time trying out different configurations and scenarios in order to understand the subject better.
Resumo:
Los recientes avances tecnológicos han encontrado un potencial campo de explotación en la educación asistida por computador. A finales de los años 90 surgió un nuevo campo de investigación denominado Entornos Virtuales Inteligentes para el Entrenamiento y/o Enseñanza (EVIEs), que combinan dos áreas de gran complejidad: Los Entornos Virtuales (EVs) y los Sistemas de Tutoría Inteligente (STIs). De este modo, los beneficios de los entornos 3D (simulación de entornos de alto riesgo o entornos de difícil uso, etc.) pueden combinarse con aquéllos de un STIs (personalización de materias y presentaciones, adaptación de la estrategia de tutoría a las necesidades del estudiante, etc.) para proporcionar soluciones educativas/de entrenamiento con valores añadidos. El Modelo del Estudiante, núcleo de un SIT, representa el conocimiento y características del estudiante, y refleja el proceso de razonamiento del estudiante. Su complejidad es incluso superior cuando los STIs se aplican a EVs porque las nuevas posibilidades de interacción proporcionadas por estos entornos deben considerarse como nuevos elementos de información clave para el modelado del estudiante, incidiendo en todo el proceso educativo: el camino seguido por el estudiante durante su navegación a través de escenarios 3D; el comportamiento no verbal tal como la dirección de la mirada; nuevos tipos de pistas e instrucciones que el módulo de tutoría puede proporcionar al estudiante; nuevos tipos de preguntas que el estudiante puede formular, etc. Por consiguiente, es necesario que la estructura de los STIs, embebida en el EVIE, se enriquezca con estos aspectos, mientras mantiene una estructura clara, estructurada, y bien definida. La mayoría de las aproximaciones al Modelo del Estudiante en STIs y en IVETs no consideran una taxonomía de posibles conocimientos acerca del estudiante suficientemente completa. Además, la mayoría de ellas sólo tienen validez en ciertos dominios o es difícil su adaptación a diferentes STIs. Para vencer estas limitaciones, hemos propuesto, en el marco de esta tesis doctoral, un nuevo mecanismo de Modelado del Estudiante basado en la Ingeniería Ontológica e inspirado en principios pedagógicos, con un modelo de datos sobre el estudiante amplio y flexible que facilita su adaptación y extensión para diferentes STIs y aplicaciones de aprendizaje, además de un método de diagnóstico con capacidades de razonamiento no monótono. El método de diagnóstico es capaz de inferir el estado de los objetivos de aprendizaje contenidos en el SIT y, a partir de él, el estado de los conocimientos del estudiante durante su proceso de aprendizaje. La aproximación almodelado del estudiante propuesta ha sido implementada e integrada en un agente software (el agente de modelado del estudiante) dentro de una plataforma software existente para el desarrollo de EVIEs denominadaMAEVIF. Esta plataforma ha sido diseñada para ser fácilmente configurable para diferentes aplicaciones de aprendizaje. El modelado del estudiante presentado ha sido implementado e instanciado para dos tipos de entornos de aprendizaje: uno para aprendizaje del uso de interfaces gráficas de usuario en una aplicación software y para un Entorno Virtual para entrenamiento procedimental. Además, se ha desarrollado una metodología para guiar en la aplicación del esta aproximación de modelado del estudiante a cada sistema concreto.---ABSTRACT---Recent technological advances have found a potential field of exploitation in computeraided education. At the end of the 90’s a new research field emerged, the so-called Intelligent Virtual Environments for Training and/or Education (IVETs), which combines two areas of great complexity: Virtual Environments (VE) and Intelligent Tutoring Systems (ITS). In this way, the benefits of 3D environments (simulation of high risk or difficult-to-use environments, etc.) may be combined with those of an ITS (content and presentation customization, adaptation of the tutoring strategy to the student requirements, etc.) in order to provide added value educational/training solutions. The StudentModel, core of an ITS, represents the student’s knowledge and characteristics, and reflects the student’s reasoning process. Its complexity is even higher when the ITSs are applied on VEs because the new interaction possibilities offered by these environments must be considered as new key information pieces for student modelling, impacting all the educational process: the path followed by the student during their navigation through 3D scenarios; non-verbal behavior such as gaze direction; new types of hints or instructions that the tutoring module can provide to the student; new question types that the student can ask, etc. Thus, it is necessary for the ITS structure, which is embedded in the IVET, to be enriched by these aspects, while keeping a clear, structured and well defined architecture. Most approaches to SM on ITSs and IVETs don’t consider a complete enough taxonomy of possible knowledge about the student. In addition, most of them have validity only in certain domains or they are hard to be adapted for different ITSs. In order to overcome these limitations, we have proposed, in the framework of this doctoral research project, a newStudentModeling mechanism that is based onOntological Engineering and inspired on pedagogical principles, with a wide and flexible data model about the student that facilitates its adaptation and extension to different ITSs and learning applications, as well as a rich diagnosis method with non-monotonic reasoning capacities. The diagnosis method is able to infer the state of the learning objectives encompassed by the ITS and, fromit, the student’s knowledge state during the student’s process of learning. The proposed student modelling approach has been implemented and integrated in a software agent (the student modeling agent) within an existing software platform for the development of IVETs called MAEVIF. This platform was designed to be easily configurable for different learning applications. The proposed student modeling has been implemented and it has been instantiated for two types of learning environments: one for learning to use the graphical user interface of a software application and a Virtual Environment for procedural training. In addition, a methodology to guide on the application of this student modeling approach to each specific system has been developed.