897 resultados para Gold Hill
Resumo:
A better understanding of a species` reproductive physiology can help conservation programs to manage primates in the wild and develop assisted reproductive technologies in captivity. We investigated whether measurements of fecal progestin and estrogen metabolites obtained by a radioimmunoassay could be used to monitor the ovarian cycle of Alouatta caraya. We also compared the occurrence of vaginal bleeding with the hormone profiles. We collected fecal samples from 3 adult and 1 subadult captive female over 5 mo and performed vaginal cytology for the adults. The interval between fecal progestin surges in the adult females was 19.11 +/- 2.14 d (n = 18 cycles). Fecal progestin concentrations remained at basal values for 9.83 +/- 2.21 d (n = 18) and rose to elevated values for 9.47 +/- 0.72 d (n = 19). The subadult female showed basal levels of fecal estrogen and progestin concentrations throughout the study, suggesting that our hormone measurements are valid to monitor the ovarian cycle. Bleeding periods coincided with basal levels of fecal estrogens and progestin at intervals of 19.8 +/- 0.9 d and lasted for 4.1 +/- 1.0 d. Although we obtained these data from only 3 individuals, the results indicate that this species likely has a menstrual-type ovarian cycle. These data provide the first endocrine profile for the Alouatta caraya ovarian cycle and are similar to results obtained for other howler species. This similarity is important for comparative studies of howlers, allowing for a better understanding of their reproductive physiology and contributing to a critical information base for managing Alouatta species.
Resumo:
Drawing on the work of Carl Jung and Robert Bly, Yaro Starak explores how 'shadow work' can be used within a Gestalt group therapy environment to uncover the 'gold in our shadow bags' - hidden inner strengths and resources that we were previously unaware of that may lead to healing and transformation. (editor abstract)
Geometry and structural control of gold vein mineralizations in the Serido Belt, northeastern Brazil
Resumo:
Nine novel arsenite-oxidizing bacteria have been isolated from two different gold mine environments in Australia. Four of these organisms grow chemolithoautotrophically with oxygen as the terminal electron acceptor, arsenite as the electron donor, and carbon dioxide-bicarbonate as the sole carbon source. Five heterotrophic arsenite-oxidizing bacteria were also isolated, one of which was found to be both phylogenetically and physiologically identical to the previously described heterotrophic arsenite oxidizer misidentified as Alcaligenes faecalis. The results showed that this strain belongs to the genus Achromobacter. Phylogenetically, the arsenite-oxidizing bacteria fall within two separate subdivisions of the Proteobacteria. Interestingly, the chemolithoautotrophic arsenite oxidizers belong to the alpha-Proteobacteria, whereas the heterotrophic arsenite oxidizers belong to the beta-Proteobacteria.