300 resultados para Glycyrrhiza glabra
Resumo:
Deep-sea benthic foraminiferal assemblages from Ocean Drilling Program (ODP) Site 1143 located in the southern South China Sea (SCS) were investigated to evaluate the relationship between faunal composition patterns and paleoceanographic changes during the last 6 million years (late Miocene to Holocene). We used multivariate statistics (correspondence analysis) to analyze carbon-flux-related changes in assemblage composition of benthic foraminifers. Additional proxies for carbon flux and deep-water ventilation include delta13C records of epifaunal Cibicidoides wuellerstorfi and infaunal Uvigerina peregrina var. dirupta and Melonis pompilioides, benthic foraminiferal accumulation rates (BFARs), diversity indices, and relative abundances of indicator species. We observe three significant benthic faunal changes in the southern South China Sea during the last 6 million years. Strong fluctuations in BFAR and relative abundance of productivity indicator species between glacial and interglacial stages after the mid-Pleistocene revolution (MPR) at approximately 0.9 Ma, indicating stronger seasonal carbon flux fluctuations, are accompanied by the extinction of such species as Stilostomella spp. Increases in carbon flux indicator species are coupled with an overall decrease in benthic foraminifer diversity around 3.0 Ma in the late Pliocene. This may indicate increasing carbon flux in a period of productivity maximum caused by enhanced offshore upwelling from intensified winter monsoon wind strength.
Resumo:
In recent years a global increase in jellyfish (i.e. Cnidarians and Ctenophores) abundance and a rise in the recurrence of jellyfish outbreak events have been largely debated, but a general consensus on this matter has not been achieved yet. Within this debate, it has been generally recognised that there is a lack of reliable data that could be analysed and compared to clarify whether indeed jellyfish are increasing throughout the world ocean as a consequence of anthropogenic impact and hydroclimatic variability. Here we describe different jellyfish data sets produced within the EU program EUROBASIN, which have been assembled with the aim of presenting an up to date overview on the diversity and standing stocks of North Atlantic jellyfish. Abundance and species composition were determined in samples collected in the epipelagic layer (0- 200m), using a net well adapted to quantitatively catching gelatinous zooplankton. The samples were collected in spring-summer (April-August) 2010-2013, in inshore and offshore North Atlantic waters, between 59-68LatN and 62W-5ELong. Jellyfish were also identified and counted in samples opportunistically collected by other sampling gears in the same region and in two coastal stations in the Bay of Biscay and in the Gulf of Cadiz. Continuous Plankton Recorder (CPR) samples collected in 2009-2012 were re-analysed with the aim of identifying the time and location of jellyfish blooms across the North Atlantic basin.
Resumo:
Stratigraphic assemblages of Quaternary through early Eocene benthic foraminifers were recovered among 10 Peru margin drill sites. Various hiatuses and intervals barren in foraminifers characterize the sections, but numerous samples contain abundant, well-preserved benthic foraminifers. Bathymetry of the extant species and California-based estimates of the paleobathymetry of the extinct species permit recognition of Quaternary sea-level fluctuations between shelf and upper bathyal depths that produced vertical migrations of oxygenated and low-oxygen habitats at the six shallow sites. Assemblages from lower-slope sites at about 9° and 11°S indicate a general subsidence of the continental margin from shelf or upper bathyal depths in Eocene time to the present lower bathyal depths. Data from 11°S suggest a major part of this subsidence occurred in late Oligocene to early Miocene time. Downslope-transported shelf specimens, particularly the small biserial species, Bolivina costata and B. vaughani, are major contributors to these lower bathyal assemblages from the middle Miocene through Quaternary time.
Resumo:
In order to examine the long-term development of offshore macrozoobenthic soft-bottom communities of the German Bight, four representative permanent stations (MZB-SSd, -FSd, -Slt, -WB) have been sampled continuously since 1969. Inter-annual variability and possible long-term trends were analysed based on spring-time samples from 1969 until 2000. This is part of the ecological long-term series of the AWI and is supplemented by periodic large-scale mapping of the benthos. The main factors influencing the development of the benthic communities are biological interactions, climate, food supply (eutrophication) and the disturbance regime. The most frequent disturbances are sediment relocations during strong storms or by bottom trawling, while occasional oxygen deficiencies and extremely cold winters are important disturbance events working on a much larger scale. Benthic communities at the sampling stations show a large inter-annual variability combined with a variation on a roughly decadal scale. In accordance with large-scale system shifts reported for the North Sea, benthic community transitions occurred between roughly the 1970ies, 80ies and 90ies. The transitions between periods are not distinctly marked by strong changes but rather reflected in gradual changes of the species composition and dominance structure.
Resumo:
Benthic foraminifers from Site 652, Site 653 (Hole 653A), and Site 654 of Leg 107 (Tyrrhenian Sea, Western Mediterranean), which penetrated with more or less good recovery the Plio-Pleistocene stratigraphic interval, were studied in a total of 699 close-spaced samples. A total number of 269 species have been classified and their quantitative distribution in each sample is reported. The benthic foraminifers assemblage is more diversified in Site 654, less diversified in Site 652. Less than a half of the benthic foraminifers species listed from Plio-Pleistocene Italian land sections are present in the coeval deep-sea Tyrrhenian record, in which shallow water species are missing and Nodosarids are poorly represented. A very few species have comparable stratigraphic distribution in the three deep-sea sequences and in Italian land sections when compared against calcareous plankton biostratigraphy. In the same three sites, the first appearance levels of several species are younger and younger, and last appearance levels are earlier and earlier from Site 654 to Site 653 and Site 652. Five biostratigraphic events, biochronologically evaluated and occurring at the same level in the deepsea Tyrrhenian record and in several land sections, have been selected as zonal boundaries of the proposed benthic foraminifers biostratigraphic scheme. The Plio-Pleistocene interval has been subdivided into four biozones and one subzone, recognizable both in the deep-sea and land-based sequences. The Cibicidoides (?) italicus assemblage zone stretches from the base of the Pliocene to the extinction level of the zonal marker, biochronologically evaluated at 2.9 Ma. The Cibicidoides robertsonianus interval zone stretches from the Cibicidoides (?) italicus extinction level to the Pliocene Mediterranean FO of Gyroidinoides altiformis, evaluated at 2.4 Ma. The Gyroidinoides altiformis interval zone stretches from the Mediterranean Pliocene FO of the zonal marker to the appearance level of Articulina tubulosa, evaluated at 1.62 Ma. The Articulina tubulosa assemblage zone stretches from the appearance level of the zonal marker to the Recent. In the Articulina tubulosa biozone, the Hyalinea baltica subzone is proposed. The appearance level of Hyalinea baltica is evaluated at 1.35 Ma, well above the Plio-Pleistocene boundary as defined in the Vrica stratotype section.
Resumo:
Analogous to West- and North Africa, East Africa experienced more humid conditions between approximately 12 to 5 kyr BP, relative to today. While timing and extension of wet phases in the North and West are well constrained, this is not the case for the East African Humid Period. Here we present a record of benthic foraminiferal assemblages and sediment elemental compositions of a sediment core from the East African continental slope, in order to provide insight into the regional shallow Indian Ocean paleoceanography and East African climate history of the last 40 kyr. During glacial times, the dominance of a benthic foraminiferal assemblage characterized by Bulimina aculeata, suggests enhanced surface productivity and sustained flux of organic carbon to the sea floor. During Heinrich Stadial 1 (H1), the Nuttallides rugosus Assemblage indicates oligotrophic bottom water conditions and therefore implies a stronger flow of southern-sourced AAIW to the study site. During the East African Humid Period, the Saidovina karreriana Assemblage in combination with sedimentary C/N and Fe/Ca ratios suggest higher river runoff to the Indian Ocean, and hence more humid conditions in East Africa. Between 8.5 and 8.1 kyr, contemporaneous to the globally documented 8.2 kyr Event, a severe reduction in river deposits implies more arid conditions on the continent. Comparison of our marine data with terrestrial studies suggests that additional moisture from the Atlantic Ocean, delivered by an eastward migration of the Congo Air Boundary during that time period, could have contributed to East African rainfall. Since approximately 9 kyr, the gaining influence of the Millettiana millettii Assemblage indicates a redevelopment of the East African fringe reefs.
Resumo:
Benthic foraminifers were studied quantitatively in 120 lower Miocene through upper Pleistocene samples from Ocean Drilling Program Site 747 (Central Kerguelen Plateau) and Sites 748 and 751 (Southern Kerguelen Plateau). These sites are situated on an 450-km-long, north-south transect between 54°49'S and 58°26'S at present water depths between 1696 and 1288 m. Principal component analysis on the census data of the most abundant 92 taxa helped to identify 8 benthic foraminifer assemblages. These benthic foraminifer assemblages were compared with Holocene faunas from southern high latitudes to reconstruct paleoenvironmental conditions. Middle lower Miocene sediments are characterized by a Uvigerina hispidocostata assemblage, indicating high paleoproductivity and/or not well-ventilated bottom water. From late early to late middle Miocene time, the Southern Kerguelen Plateau was bathed by a young, well-oxygenated, and carbonate-aggressive water mass, as indicated by a Nuttallides umbonifer-dominated benthic foraminifer assemblage. During late middle Miocene time, an Astrononion pusillum assemblage took over for only about 1 m.y., probably indicating the first injection of an aged water mass, similar to the North Atlantic Deep Water (NADW), into a developing circumpolar current system. Around the middle to late Miocene boundary, the fauna again became dominated by N. umbonifer. After the last appearance of N. umbonifer, reestablishment of the A. pusillum assemblage from the early late through at least the late late Miocene, indicated the established influence of a NADW-like water mass. The latest Miocene through middle late Pliocene benthic foraminifer assemblage was characterized by Epistominella exigua and strong carbonate dissolution, indicating very high biosiliceous production, and this in turn may indicate the formation and paleoposition of an Antarctic Polar Frontal Zone. From the late late Pliocene, a Trifarina angulosa assemblage (indicative today of sandy substrate and vigorous bottom currents) strongly dominated the fauna up to the late Pleistocene, when Bulimina aculeata (indicative today of calm sedimentation with high organic matter fluxes) became an important and partly dominating constituent of the fauna. This is interpreted as the faunal response to the decreased winnowing force (bottom current velocities) of the Antarctic Circumpolar Current during periods of global climatic amelioration and raised sea level.
Resumo:
This paper discusses the Paleobathymetric and paleoenvironmental history of the New Hebrides Island Arc and North d'Entrecasteaux Ridge during Cenozoic time based on benthic foraminiferal and sedimentological data. Oligocene and Pliocene to Pleistocene benthic foraminiferal assemblages from Sites 827, 828, 829, and 832 of Ocean Drilling Program (ODP) Leg 134 (Vanuatu) are examined by means of Q-mode factor analysis. The results of this analysis recognize the following bathymetrically significant benthic foraminiferal biofacies: (1) Globocassidulina subglobosa biofacies and Bulimina aculeata-Bolivinita quadrilatera biofacies representing the upper bathyal zone (600-1500 m); (2) Gavelinopsis praegeri-Cibicides wuellerstorfi biofacies, indicating the Pacific Intermediate Water (water depth between 1500 and 2400 m); (3) Tosaia hanzawai-Globocassidulina muloccensis biofacies, Valvulineria gunjii biofacies, and the Melonis barleeanus-Melonis sphaeroides biofacies, which characterize the lower bathyal zone; (4) the Nuttallides umbonifera biofacies, which characterizes the interval between the lysocline (approximately 3500 m) and the carbonate compensation depth (approximately 4500 m); and (5) the Rhabdammina abyssorum biofacies representing the abyssal zone below the carbonate compensation depth. Benthic foraminiferal patterns are used to construct Paleobathymetric and paleogeographic profiles of the New Hebrides Island Arc and North d'Entrecasteaux Ridge for the following age boundaries: late Miocene/Pliocene, early/late Pliocene, Pliocene/Pleistocene, and Pleistocene/Holocene.
Resumo:
Late Cenozoic benthic foraminiferal faunas from the Caribbean Deep Sea Drilling Project (DSDP) Site 502 (3052 m) and East Pacific DSDP Site 503 (3572 m) were analyzed to interpret bottom-water masses and paleoceanographic changes occurring as the Isthmus of Panama emerged. Major changes during the past 7 Myr occur at 6.7-6.2, 3.4, 2.0, and 1.1 Ma in the Caribbean and 6.7-6.4, 4.0-3.2, 2.1, 1.4, and 0.7 Ma in the Pacific. Prior to 6.7 Ma, benthic foraminiferal faunas at both sites indicate the presence of Antarctic Bottom Water (AABW). After 6.7 Ma benthic foraminiferal faunas indicate a shift to warmer water masses: North Atlantic Deep Water (NADW) in the Caribbean and Pacific Deep Water (PDW) in the Pacific. Flow of NADW may have continued across the rising sill between the Caribbean and Pacific until 5.6 Ma when the Pacific benthic foraminiferal faunas suggest a decrease in bottom-water temperatures. After 5.6 Ma deep-water to intermediate-water flow across the sill appears to have stopped as the bottom-water masses on either side of the sill diverge. The second change recorded by benthic foraminiferal faunas occurs at 3.4 Ma in the Caribbean and 4.0-3.2 Ma in the Pacific. At this time the Caribbean is flooded with cold AABW, which is either gradually warmed or is replaced by Glacial Bottom Water (GBW) at 2.0 Ma and by NADW at 1.1 Ma. These changes are related to global climatic events and to the depth of the sill between the Caribbean and Atlantic rather than the rising Isthmus of Panama. Benthic foraminiferal faunas at East Pacific Site 503 indicate a gradual change from cold PDW to warmer PDW between 4.0 and 3.2 Ma. The PDW is replaced by the warmer, poorly oxygenated PIW at 2.1 Ma. Although the PDW affects the faunas during colder intervals between 1.4 and 0.7 Ma, the PIW remains the principal bottom-water mass in the Guatemala Basin of the East Pacific.
Resumo:
During Leg 188 of the Ocean Drilling Program (ODP), employing JOIDES Resolution, we drilled holes at three sites in the southern Indian Ocean in and near Prydz Bay, East Antarctica, between 28 January and 29 February 2000. The objectives of the voyage were to: - Core through sediments deposited when Antarctica underwent the transition from "greenhouse" to the modern "icehouse" state late in the Eocene or early in the Oligocene, at sites obtaining their sediment from the currently subglacial Gamburtsev Mountains that probably were the site of nucleation of the ice sheet (principally Site 1166); - Obtain a sediment record from times at which major changes in the ice sheet volume and characteristics took place as judged from oxygen isotope records, especially at ~23.7 Ma (Oligocene/Miocene boundary), 12-16 Ma (middle Miocene), and 2.7 Ma (late Pliocene) (mainly Site 1165); and - Sample through the upper Pliocene and Quaternary in an attempt to document fluctuations in the extent of the ice sheet over the continental shelf during the Quaternary (especially Site 1167). Paleogene foraminifer-bearing marine sections were not intersected, and thus discussion of marine sections is restricted to the Neogene. Foraminifers are not major contributors to Leg 188 chronostratigraphy but contribute to paleoenvironmental interpretation, to issues such as carbonate compensation depth (CCD) effects and source and history of sediment, and provide a basis for Sr and d18O studies. Chronostratigraphy for the various sections was compiled from diatoms, radiolarians, and paleomagnetism (Shipboard Scientific Party, 2001, doi:10.2973/odp.proc.ir.188.101.2001). Foraminifers were sporadic rather than continuous except in short intervals; however, the Neogene foraminifers from the region are very poorly known and the new records proved to be of significant value in paleoenvironmental interpretation. Only at Site 1167 did drilling intersect a section that yielded foraminifers virtually throughout. Other than for the very young section at each site, there is virtually no continuity of assemblages between sites and thus each section is treated here as separate and unrelated.