981 resultados para Glutamate-receptors


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chicken (Gallus gallus) brains were used to investigate the typology and the immunolabel pattern for the subunits composing the AMPA-type glutamate receptors (GluR) of hindbrain neurons of the dorsal (dND) and ventral nuclei (vND) of the Deiter`s vestibular complex (CD), which is the avian correspondent of the lateral vestibular nucleus (LVN) of mammals. Our results revealed that neurons of both divisions were poor in GluR1. The vND, the GluR2/3+ and GluR4+ label presented no area or neuronal size preference, although most neurons were around 75%. The dND neurons expressing GluR2/3 are primarily around 85%, medium to large-sized 85%, and predominantly 60% located in the medial portion of the rostral pole and in the lateral portion of the caudal pole. The majority of dND neurons containing GluR4 are also around 75%, larger (70% are large and giant), exhibiting a distribution that seems to be complementary to that of GluR2/3+ neurons. This distinct arrangement indicates functional differences into and between the DC nuclei, also signaling that such variation could be attributed to the diverse nature of the subunit composition of the GluRs. Discussion addresses the morphological and functional correlation of the avian DC with the LVN of mammals in addition to the high morphological correspondence, To include these data into the modern comparative approach we propose to adopt a similar nomenclature for the avian divisions dND and vND that could be referred as dLVN and vLVN. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A rise in arterial PCO(2) stimulates breathing and sympathetic activity to the heart and blood vessels. In the present study, we investigated the involvement of the retrotrapezoid nucleus (RTN) and glutamatergic mechanisms in the Botzinger/C1 region (Botz/C1) in these responses. Splanchnic sympathetic nerve discharge (sSND) and phrenic nerve discharge (PND) were recorded in urethane-anesthetized, sino-aortic-denervated, vagotomized, and artificially ventilated rats subjected to hypercapnia (end-expiratory CO(2) from 5% to 10%). Phrenic activity was absent at end-expiratory CO(2) of 4%, and strongly increased when end-expiratory CO(2) reached 10%. Hypercapnia also increased sSND by 103 +/- 7%. Bilateral injections of the GABA-A agonist muscimol (2 mM) into the RTN eliminated the PND and blunted the sSND activation (Delta = +56 +8%) elicited by hypercapnia. Injections of NMDA receptor antagonist AP-5 (100 mM), non-NMDA receptor antagonist 6,7-dinitro-quinoxaline-2,3-dione (DNQX; 100 mM) or metabotropic glutamate receptor antagonist (+/-)-alpha-methyl-4-carboxyphenylglycine (MCPG; 100 mM) bilaterally into the Botz/C1 reduced PND (Delta = +43 +/- 7%, +52 +/- 6% or +56 +/- 11%, respectively). MCPG also reduced sSND (Delta = +41 +/- 7%), whereas AP-5 and DNQX had no effect. In conclusion, the increase in sSND caused by hypercapnia depends on increased activity of the RTN and on metabotropic receptors in the Botz/C1, whereas PND depends on increased RTN activity and both ionotropic and metabotropic receptors in the Botz/C1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are inflammatory diseases of the central nervous system (CNS) characterized by localized areas with demyelination. Disease is believed to be an autoimmune disorder mediated by activated immune cells such as T- and B-lymphocytes and macrophages/microglia. Lymphocytes are primed in the peripheral tissues by antigens, and clonally expanded cells infiltrate the CNS. They produce large amounts of inflammatory cytokines, nitric oxide (NO) that lead to demyelination and axonal degeneration. Although several studies have shown that oligodendrocytes (OLGs), the myelin-forming glial cells in the CNS, are sensitive to cell death stimuli, such as cytotoxic cytokines, anti-myelin antibodies, NO, and oxidative stress, in vitro, the mechanisms underlying injury to the OLGs in MS/EAE remain unclear. The central role of glutamate receptors in mediating excitotoxic neuronal death in stroke, epilepsy, trauma and MS has been well established. Glutamate is the major excitatory amino acid transmitter within the CNS and it's signaling is mediated by a number of postsynaptic ionotropic and metabotropic receptors. Inflammation can be blocked with anti-cell adhesion molecules MAb, simultaneously protected oligodendrocytes and neurons against glutamate-mediated damage with the AMPA/kainate antagonist NBQX, and the NMDA receptor antagonist GPE, could thus be effective therapies for multiple sclerosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently the role of hydrogen sulphide (H2S) as a gasotransmitter stimulated wide interest owing to its involvement in Alzheimer's disease and ischemic stroke. Previously we demonstrated the importance of functional ionotropic glutamate receptors (GluRs) by neurons is critical for H2S-mediated dose- and time-dependent injury. Moreover N-methyl-D-aspartate receptor (NMDAR) antagonists abolished the consequences of H2S-induced neuronal death. This study focuses on deciphering the downstream effects activation of NMDAR on H2S-mediated neuronal injury by analyzing the time-course of global gene profiling (5, 15, and 24 h) to provide a comprehensive description of the recruitment of NMDAR-mediated signaling. Microarray analyses were performed on RNA from cultured mouse primary cortical neurons treated with 200 µM sodium hydrosulphide (NaHS) or NMDA over a time-course of 5–24 h. Data were validated via real-time PCR, western blotting, and global proteomic analysis. A substantial overlap of 1649 genes, accounting for over 80% of NMDA global gene profile present in that of H2S and over 50% vice versa, was observed. Within these commonly occurring genes, the percentage of transcriptional consistency at each time-point ranged from 81 to 97%. Gene families involved included those related to cell death, endoplasmic reticulum stress, calcium homeostasis, cell cycle, heat shock proteins, and chaperones. Examination of genes exclusive to H2S-mediated injury (43%) revealed extensive dysfunction of the ubiquitin-proteasome system. These data form a foundation for the development of screening platforms and define targets for intervention in H2S neuropathologies where NMDAR-activated signaling cascades played a substantial role. J. Cell. Physiol. 226: 1308–1322, 2011.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Excitotoxicity resulting from overstimulation of glutamate receptors is a major cause of neuronal death in cerebral ischemic stroke. The overstimulated ionotropic glutamate receptors exert their neurotoxic effects in part by overactivation of calpains, which induce neuronal death by catalyzing limited proteolysis of specific cellular proteins. Here, we report that in cultured cortical neurons and in vivo in a rat model of focal ischemic stroke, the tyrosine kinase Src is cleaved by calpains at a site in the N-terminal unique domain. This generates a truncated Src fragment of ?52 kDa, which we localized predominantly to the cytosol. A cell membrane-permeable fusion peptide derived from the unique domain of Src prevents calpain from cleaving Src in neurons and protects against excitotoxic neuronal death. To explore the role of the truncated Src fragment in neuronal death, we expressed a recombinant truncated Src fragment in cultured neurons and examined how it affects neuronal survival. Expression of this fragment, which lacks the myristoylation motif and unique domain, was sufficient to induce neuronal death. Furthermore, inactivation of the prosurvival kinase Akt is a key step in its neurotoxic signaling pathway. Because Src maintains neuronal survival, our results implicate calpain cleavage as a molecular switch converting Src from a promoter of cell survival to a mediator of neuronal death in excitotoxicity. Besides unveiling a new pathological action of Src, our discovery of the neurotoxic action of the truncated Src fragment suggests new therapeutic strategies with the potential to minimize brain damage in ischemic stroke.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current biological approaches to the treatment of depression focus mainly on modification of monoaminergic neurotransmission. New agents targeting these neurotransmitters are under development. Many novel antidepressant targets are however under investigation. These include the neurokinins, glutamate, purinoceptors, opioids and trophic factors. While many of these potential targets are likely to fail clinical development, exciting novel therapeutic options are likely to emerge.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anticonvulsants, including valproate and carbamazepine, have established efficacy in the treatment of mania. The anticonvulsant, lamotrigine. has been reported to have antimanic and antidepressant efficacy, and mood-stabilising effects in case reports and preliminary open trials. The efficacy and tolerability of lamotrigine has been compared with olanzapine and lithium in a randomised, prospective, controlled fashion over a period of 4 weeks treatment in a total of 45 hospitalised patients with DSM-IV-defined mania. Significant improvements of a similar magnitude were observed for all treatment groups and lamotrigine was well tolerated. Mechanisms of action proposed to explain the antimanic activity of lamotrigine include inhibition of voltage-sensitive and use-dependent sodium channels, inhibition of glutamate release and calcium channel blockade. Platelet studies have indicated supersensitivity of glutamate receptors and increased intracellular calcium concentrations in patients with mania. Further clinical and mechanistic studies of lamotrigine use in mania are warranted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein calcium sensors of the Homer family have been proposed to modulate the activity of various ion channels and nuclear factor of activated T cells (NFAT), the transcription factor modulating skeletal muscle differentiation. We monitored Homer expression and subcellular localization in human skeletal muscle biopsies following 60 d of bedrest [Second Berlin Bedrest Study (BBR2-2)]. Soleus (SOL) and vastus lateralis (VL) biopsies were taken at start (pre) and at end (end) of bedrest from healthy male volunteers of a control group without exercise (CTR; n=9), a resistive-only exercise group (RE; n=7), and a combined resistive/vibration exercise group (RVE; n=7). Confocal analysis showed Homer immunoreactivity at the postsynaptic microdomain of the neuromuscular junction (NMJ) at bedrest start. After bedrest, Homer immunoreactivity decreased (CTR), remained unchanged (RE), or increased (RVE) at the NMJ. Homer2 mRNA and protein were differently regulated in a muscle-specific way. Activated NFATc1 translocates from cytoplasm to nucleus; increased amounts of NFATc1-immunopositive slow-type myonuclei were found in RVE myofibers of both muscles. Pulldown assays identified NFATc1 and Homer as molecular partners in skeletal muscle. A direct motor nerve control of Homer2 was confirmed in rat NMJs by in vivo denervation. Homer2 is localized at the NMJ and is part of the calcineurin-NFATc1 signaling pathway. RVE has additional benefit over RE as countermeasure preventing disuse-induced neuromuscular maladaptation during bedrest.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thalamus plays an important role in the sensorial processing information, in this particular case, the visual information. Several neuronal groups have been characterized as conductors and processors of important sensorial information to the cerebral cortex. The lateral geniculate complex is one to them, and appears as a group very studied once it is responsible, in almost all totality, for the processing of visual information. Among the nuclei that constitute the lateral geniculate complex we highlight the dorsal lateral geniculate nucleus of the thalamus (DLG), the main thalamic relay for the visual information. This nucleus is located rostral and lateral to medial geniculate nucleus and ventral to thalamic pulvinar nucleus in most of the mammals. In the primates humans and non-humans, it presents as a laminate structure, arranged in layers, when observed in coronal sections. The objective of this work was to do a mapping of the retinal projections and a citoarchictetonic and neurochemical characterization of DLG in the marmoset (Callithrix jacchus), a New World primate. The retinal projections were traced by anterograde transport of subunit b of cholera toxin (CTb), the citoarchicteture was described by Nissl method, and to neurochemical characterization immunohistochemicals technical were used to examine the main neurotransmitters and neuroatives substances present in this neural center. In DGL of marmoset thalamus, in coronal sections labeled by Nissl method, was possible to visualize the division of this nucleus in four layers divided in two portions: magnocellular and parvocellular. The retinal projections were present being visualized fibers and terminals immunorreactives to CTb (IR-CTb) in the DLG ipsilateral and contralateral. And through the immunohistochemicals techniques was observed that DLG contain cells, fibers and/or terminals immunoreactives against neuronal nuclear protein, subunits of AMPA 15 glutamate receptors (GluR1, GluR2/3, GluR4), choline acetyltransferase, serotonin, glutamic acid decarboxylase, binding calcium proteins (calbindin, parvalbumin and calretinin), vasopressin, vasoactive intestinal polypeptide, and an astrocyte protein, glial fibrillary acidic protein.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Orb-web-spiders present a series of different strategies for prey capture, involving the use of different types of silk for web building, the use of adhesive traps in the webs, the secretion of toxic compounds to the spider's preys in the adhesive coating of the capture web and the biosynthesis of a wide range of structurally related acylpolyamine toxins in their venoms. The polyamine toxins usually block neuromuscular junctions and/or the central nervous system (CNS) of Arthropods, targeting specially the ionotropic glutamate receptors; this way these toxins are used are as chemical weapons to kill / paralyze the spider's prey. Polyamine toxins contain many azamethylene groups involved with the chelation of metal ions, which in turn can interact with the glutamate receptors, affecting the toxicity of these toxins. It was demonstrated that the chelation of Ni+2, Fe+2, Pb+2, Ca+2 and Mg+2 ions by the desalted crude venom of Nephilengys cruentata and by the synthetic toxin JSTX-3, did not cause any significant change in the toxicity of the acylpolyamine toxins to the model-prey insect (honeybees). However, it was also reported that the chelation of Zn+2 ions by the acylpolyamines potentiated the lethal / paralytic action of these toxins to the honeybees, while the chelation of Cu+2 ions caused the inverse effect. Atomic absorption spectrometry and Plasma-ICP analysis both of N.cruentata venom and honeybee's hemolymph revealed that the spider's venom concentrates Zn+2 ions, while the honeybee's hemolymph concentrates Cu+2 ions. These results are suggesting that the natural accumulation of Zn+2 ions in N. cruentata venom favors the prey catching and/or its maintenance in the web, while the natural accumulation of Cu+2 ions in prey's hemolymph minimizes the efficiency of the acylpolyamine toxins as killing/paralyzing tool.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acylpolyamines are low molecular mass toxins occurring exclusively in the venoms from solitary wasps and some groups of spiders. Their chemical structures have been elucidated using hyphenated techniques of mass spectrometry, such as LC-MS and MS/MS, or through direct analysis with different types of NMR analyses. The chemical structures of the acylpolyamine toxins from the venoms of Nephilinae orb-web spiders appear to be organized into four parts based on the combinatorial way that the chemical building blocks are bound to each other. An aromatic moiety (part I) is connected through a linker amino acid (part II) to a polyamine chain (part III), which in turn may be connected to an optional tail (part IV). The polyamine chains were classified into seven subtypes according to the different combinations of chemical building blocks. These polyamine chains, in turn, are connected to one of three chromophore moieties: a 2,4-dihydroxyphenyl acetyl group, a 4-hydroxyindolyl acetyl group, or an indolyl acetyl group. They may be connected through an asparagine residue or sometimes through the dipeptide ornithyl asparagine. Also, nine different types of backbone tails may be attached to the polyamine chains. These toxins are noncompetitive blockers of ionotropic glutamate receptors with neuroprotective action against the neuronal death and antiepileptic effect. Thus, compounds of this class of spider venom toxin seem to represent interesting molecular models for the development of novel neuropharmaceutical drugs. © 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O fator de crescimento do nervo (NGF) pode retardar a degeneração celular na retina de ratos em diferentes injúrias retinianas. O acúmulo de água em células da retina contribui para o desenvolvimento de edema retiniano e degeneração neuronal. Em atribuição ao seu efeito protetor, este trabalho teve por objetivo avaliar se o NGF influencia o edema celular osmótico em células de Müller e células bipolares. Assim, montagens planas, fatias de retina e células isoladas da retina de ratos foram superfundidas com solução hipo-osmótica na presença de BaCl2. Secções retinianas foram utilizadas para imunomarcações, e a liberação de adenosina foi medida por cromatografia líquida de alta eficácia, em montagens planas. A área de secção transversal celular foi medida antes e após a superfusão em meio hipo-osmótico, em fatias de retina e suspensões celulares. Tanto células de Müller quanto células bipolares foram imunopositivas para TrkA, mas somente células de Müller foram marcadas contra p75NTR e NGF. A hipo-osmolaridade induziu um rápido e significativo aumento da liberação de adenosina endógena em retinas controle, mas não em retinas perfundidas com BaCl2. O NGF inibiu o edema citotóxico em células de Müller e em células bipolares em fatias de retina controle e retinas pós-isquêmicas submetidas a condições hipo-osmóticas. Por outro lado, NGF impediu o edema citotóxico da célula de Müller isolada, mas não da célula bipolar isolada (em meio hipo-osmótico contendo íons Ba2+). Isto sugere que NGF induz a liberação de fatores por células de Müller, os quais inibem o edema citotóxico de células bipolares em fatias de retina. O efeito inibitório do NGF sobre o edema citotóxico de células de Müller foi mediado pela ativação do receptor TrkA, mas não de p75NTR, e foi anulado por bloqueadores de receptores metabotrópicos de glutamato, receptores de adenosina A1, e receptores do fator de crescimento de fibroblasto (FGF). O bFGF evitou o edema citotóxico de células de Müller isoladas, mas inibiu somente em parte o edema citotóxico de células bipolares isoladas. O bloqueio de FGFR impediu o efeito inibidor de edema celular da adenosina, sugerindo que a liberação de bFGF ocorre após à ativação autócrina/parácrina de receptores Al. Além de bFGF, GDNF e TGF431 reduziram em parte o edema citotóxico da célula bipolar. Estes dados sugerem que o efeito neuroprotetor do NGF é em parte mediado pela prevenção de edema citotóxico de células gliais e bipolares da retina.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Overstimulation of the glutamatergic system (excitotoxicity) is involved in various acute and chronic brain diseases. Several studies support the hypothesis that guanosine-5'-monophosphate (GMP) can modulate glutamatergic neurotransmission. The aim of this study was to evaluate the effects of chronically administered GMP on brain cortical glutamatergic parameters in mice. Additionally, we investigated the neuroprotective potential of the GMP treatment submitting cortical brain slices to oxygen and glucose deprivation (OGD). Moreover, measurements of the cerebrospinal fluid (CSF) purine levels were performed after the treatment. Mice received an oral administration of saline or GMP during 3 weeks. GMP significantly decreases the cortical brain glutamate binding and uptake. Accordingly, GMP reduced the immunocontent of the glutamate receptors subunits, NR2A/B and GluR1 (NMDA and AMPA receptors, respectively) and glutamate transporters EAAC1 and GLT1. GMP treatment significantly reduced the immunocontent of PSD-95 while did not affect the content of Snap 25, GLAST and GFAP. Moreover, GMP treatment increased the resistance of neocortex to OGD insult. The chronic GMP administration increased the CSF levels of GMP and its metabolites. Altogether, these findings suggest a potential modulatory role of GMP on neocortex glutamatergic system by promoting functional and plastic changes associated to more resistance of mice neocortex against an in vitro excitotoxicity event.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The activation of the transient receptor potential vanilloid type 1 channel (TRPV1) has been correlated with oxidative and nitrosative stress and cell death in the nervous system. Our previous results indicate that TRPV1 activation in the adult retina can lead to constitutive and inducible nitric oxide synthase-dependent protein nitration and apoptosis. In this report, we have investigated the potential effects of TRPV1 channel activation on nitric oxide synthase (NOS) expression and function, and the putative participation of ionotropic glutamate receptors in retinal TRPV1-induced protein nitration, lipid peroxidation, and DNA fragmentation. Intravitreal injections of the classical TRPV1 agonist capsaicin up-regulated the protein expression of the inducible and endothelial NOS isoforms. Using 4,5-diaminofluorescein diacetate for nitric oxide (NO) imaging, we found that capsaicin also increased the production of NO in retinal blood vessels. Processes and perikarya of TRPV1-expressing neurons in the inner nuclear layer of the retina were found in the vicinity of nNOS-positive neurons, but those two proteins did not colocalize. Retinal explants exposed to capsaicin presented high protein nitration, lipid peroxidation, and cell death, which were observed in the inner nuclear and plexiform layers and in ganglion cells. This effect was partially blocked by AP-5, a NMDA glutamate receptor antagonist, but not by CNQX, an AMPA/kainate receptor antagonist. These data support a potential role for TRPV1 channels in physiopathological retinal processes mediated by NO, which at least in part involve glutamate release.