968 resultados para Glutamate synthase expression
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Abnormal regulation of glycogen synthase kinase 3-beta (GSK3B) activity has been implicated in the pathophysiology of mood disorders. Many pharmacological agents, including antidepressants, can modulate GSK3B. The aim of the present study was to investigate the effect of short-and long-term sertraline treatment on the expression and phosphorylation of GSK3B in platelets of patients with late-life major depression. Methods: Thirty-nine unmedicated elderly adults with major depressive disorder (MOD) were initially included in this study. The comparison group comprised 18 age-matched, healthy individuals. The expression of total and Ser-9 phosphorylated GSK3B (pGSK3B) was determined by Enzyme Immunometric Assay (EIA) in platelets of patients and controls at baseline, and after 3 and 12 months of sertraline treatments for patients only. During this period, patients were continuously treated with therapeutic doses of sertraline. GSK3B activity was indirectly estimated by calculating the proportion of inactive (phosphorylated) forms (pGSK3B) in relation to the total expression of the enzyme (i.e.. GSK3B ratio). Results: Depressed patients had significantly higher levels of pGSK3B as compared to controls (p < 0.001). Within the MDD group, after 3 months of sertraline treatment no significant changes were observed in GSK3B expression and phosphorylation state, as compared to baseline levels. However, after 12 months of treatment we found a significant increase in the expression of total GSK3B (p = 0.05), in the absence of any significant changes in pGSK3B (p = 0.12), leading to a significant reduction in GSK3B ratio (p = 0.001). Conclusions: Our findings indicate that GSK3B expression was upregulated by the continuous treatment with sertraline, along with an increment in the proportion of active forms of the enzyme. This is compatible with an increase in overall GSK3B activity, which may have been induced by the long-term treatment of late-life depression with sertraline. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Abscisic acid (ABA) is an important regulator of plant responses to environmental stresses and an absolute requirement for stress tolerance. Recently, a third phytoene synthase (PSY3) gene paralog was identified in monocots and demonstrated to play a specialized role in stress-induced ABA formation, thus suggesting that the first committed step in carotenogenesis is a key limiting step in ABA biosynthesis. To examine whether the ectopic expression of PSY, other than PSY3, would similarly affect ABA level and stress tolerance, we have produced transgenic tobacco containing a fruit-specific PSY (CpPSY) of grapefruit (Citrus paradisi Macf.). The transgenic plants contained a single- or double-locus insertion and expressed CpPSY at varying transcript levels. In comparison with the wild-type plants, the CpPSY expressing transgenic plants showed a significant increase on root length and shoot biomass under PEG-, NaCl- and mannitol-induced osmotic stress. The enhanced stress tolerance of transgenic plants was correlated with the increased endogenous ABA level and expression of stress-responsive genes, which in turn was correlated with the CpPSY copy number and expression level in different transgenic lines. Collectively, these results provide further evidence that PSY is a key enzyme regulating ABA biosynthesis and that the altered expression of other PSYs in transgenic plants may provide a similar function to that of the monocot's PSY3 in ABA biosynthesis and stress tolerance. The results also pave the way for further use of CpPSY, as well as other PSYs, as potential candidate genes for engineering tolerance to drought and salt stress in crop plants.
Resumo:
Objectives The effects of longterm ethanol consumption on the levels of nitric oxide (NO) and the expression of endothelial NO synthase (eNOS), inducible NO synthase (iNOS) and metalloproteinase-2 (MMP-2) were studied in rat kidney. Methods Male Wistar rats were treated with 20% ethanol (v/v) for 6 weeks. Nitrite and nitrate generation was measured by chemiluminescence. Protein and mRNA levels of eNOS and iNOS were assessed by immunohistochemistry and quantitative real-time polymerase chain reaction, respectively. MMP-2 activity was determined by gelatin zymography. Histopathological changes in kidneys and indices of renal function (creatinine and urea) and tissue injury (mitochondrial respiration) were also investigated. Results Chronic ethanol consumption did not alter malondialdehyde levels in the kidney. Ethanol consumption induced a significant increase in renal nitrite and nitrate levels. Treatment with ethanol increased mRNA expression of both eNOS and iNOS. Immunohistochemical assays showed increased immunostaining for eNOS and iNOS after treatment with ethanol. Kidneys from ethanol-treated rats showed increased activity of MMP-2. Histopathological investigation of kidneys from ethanol-treated animals revealed tubular necrosis. Indices of renal function and tissue injury were not altered in ethanol-treated rats. Conclusions Ethanol consumption increased renal metalloproteinase expression/activity, which was accompanied by histopathological changes in the kidney and elevated NO generation. Since iNOS-derived NO and MMPs contribute to progressive renal injury, the increased levels of NO and MMPs observed in ethanol-treated rats might contribute to progressive renal damage.
Resumo:
ABSTRACTDie vorliegende Arbeit befasste sich mit der Reinigung,heterologen Expression, Charakterisierung, molekularenAnalyse, Mutation und Kristallisation des EnzymsVinorin-Synthase. Das Enzym spielt eine wichtige Rolle inder Ajmalin-Biosynthese, da es in einerAcetyl-CoA-abhängigen Reaktion die Umwandlung desSarpagan-Alkaloids 16-epi-Vellosimin zu Vinorin unterBildung des Ajmalan-Grundgerüstes katalysiert. Nach der Reinigung der Vinorin-Synthase ausHybrid-Zellkulturen von Rauvolfia serpentina/Rhazya strictamit den fünf chromatographischen TrennmethodenAnionenaustauschchromatographie an SOURCE 30Q, HydrophobeInteraktionen Chromatographie an SOURCE 15PHE,Chromatographie an MacroPrep Ceramic Hydroxyapatit,Anionenaustauschchromatographie an Mono Q undGrößenausschlußchromatographie an Superdex 75 konnte dieVinorin-Synthase aus 2 kg Zellkulturgewebe 991fachangereichert werden.Das nach der Reinigung angefertigte SDS-Gel ermöglichte eineklare Zuordnung der Protein-Bande als Vinorin-Synthase.Der Verdau der Enzymbande mit der Endoproteinase LysC unddie darauffolgende Sequenzierung der Spaltpeptide führte zuvier Peptidsequenzen. Der Datenbankvergleich (SwissProt)zeigte keinerlei Homologien zu Sequenzen bekannterPflanzenenzyme. Mit degenerierten Primern, abgeleitet voneinem der erhaltenen Peptidfragmente und einer konserviertenRegion bekannter Acetyltransferasen gelang es, ein erstescDNA-Fragment der Vinorin-Synthase zu amplifizieren. Mit derMethode der RACE-PCR wurde die Nukleoidsequenzvervollständigt, was zu einem cDNA-Vollängenklon mit einerGröße von 1263 bp führte, der für ein Protein mit 421Aminosäuren (46 kDa) codiert.Das Vinorin-Synthase-Gen wurde in den pQE2-Expressionsvektorligiert, der für einen N-terminalen 6-fachen His-tagcodiert. Anschließend wurde sie erstmals erfolgreich in E.coli im mg-Maßstab exprimiert und bis zur Homogenitätgereinigt. Durch die erfolgreiche Überexpression konnte dieVinorin-Synthase eingehend charakterisiert werden. DerKM-Wert für das Substrat Gardneral wurde mit 20 µM, bzw.41.2 µM bestimmt und Vmax betrug 1 pkat, bzw. 1.71 pkat.Nach erfolgreicher Abspaltung des His-tags wurden diekinetischen Parameter erneut bestimmt (KM- Wert 7.5 µM, bzw.27.52 µM, Vmax 0.7 pkat, bzw. 1.21 pkat). Das Co-Substratzeigt einen KM- Wert von 60.5 µM (Vmax 0.6 pkat). DieVinorin-Synthase besitzt ein Temperatur-Optimum von 35 °Cund ein pH-Optimum bei 7.8.Homologievergleiche mit anderen Enzymen zeigten, dass dieVinorin-Synthase zu einer noch kleinen Familie von bisher 10Acetyltransferasen gehört. Alle Enzyme der Familie haben einHxxxD und ein DFGWG-Motiv zu 100 % konserviert. Basierendauf diesen Homologievergleichen und Inhibitorstudien wurden11 in dieser Proteinfamilie konservierte Aminosäuren gegenAlanin ausgetauscht, um so die Aminosäuren einer in derLiteratur postulierten katalytischen Triade(Ser/Cys-His-Asp) zu identifizieren.Die Mutation aller vorhandenen konservierten Serine undCysteine resultierte in keiner Mutante, die zumvollständigen Aktivitätsverlust des Enzyms führte. Nur dieMutationen H160A und D164A resultierten in einemvollständigen Aktivitätsverlust des Enzyms. Dieses Ergebniswiderlegt die Theorie einer katalytischen Triade und zeigte,dass die Aminosäuren H160A und D164A exklusiv an derkatalytischen Reaktion beteiligt sind.Zur Überprüfung dieser Ergebnisse und zur vollständigenAufklärung des Reaktionsmechanismus wurde dieVinorin-Synthase kristallisiert. Die bis jetzt erhaltenenKristalle (Kristallgröße in µm x: 150, y: 200, z: 200)gehören der Raumgruppe P212121 (orthorhombisch primitiv) anund beugen bis 3.3 Å. Da es bis jetzt keine Kristallstruktureines zur Vinorin-Synthase homologen Proteins gibt, konntedie Struktur noch nicht vollständig aufgeklärt werden. ZurLösung des Phasenproblems wird mit der Methode der multiplenanomalen Dispersion (MAD) jetzt versucht, die ersteKristallstruktur in dieser Enzymfamilie aufzuklären.
Resumo:
Die Expression der humanen induzierbaren NO-Synthase (iNOS) wird sowohl über transkriptionelle als auch über post-transkriptionelle Mechanismen reguliert. Dabei spielt die Modulation der iNOS-mRNA-Stabilität durch RNA-bindende Proteine eine bedeutende Rolle. In dieser Arbeit konnte eine Beteiligung des p38-MAPK-Signaltransduktionsweges sowie der RNA-bindenden Proteine TTP, KSRP, HuR und PTB an der Regulation der iNOS-Expression dargestellt werden. Hemmung der p38-MAPK führte zu einer Reduktion der iNOS-mRNA-Expression, hatte aber keinen Effekt auf die iNOS-Promotoraktivität. Das RNA-bindende Protein Tristetraprolin (TTP) erhöhte die Stabilität der iNOS-mRNA nach Zytokin-Stimulation, ohne jedoch mit ihr zu interagieren. Die Proteinexpression von TTP war unter dem Einfluss von Zytokinen erhöht; Inhibition der p38-MAPK verursachte eine Verminderung der Zytokin-stimulierten TTP-Expression. Das „KH-type splicing regulatory protein" (KSRP) übte einen destabilisierenden Effekt auf die iNOS-mRNA aus. Der Abbau der mRNA wird dabei wahrscheinlich durch eine Zytokin-unabhängige Interaktion von KSRP mit dem Exosom vermittelt. Ebenso konnte zwischen KSRP und TTP eine Wechselwirkung beobachtet werden, die nach Induktion der iNOS-Expression mit Zytokinen verstärkt und durch p38-MAPK-Inhibitoren hemmbar war. Des Weiteren konnte gezeigt werden, dass die Bindung von KSRP an die iNOS-mRNA-3’-UTR für die Vermittlung des destabilisierenden Effekts essentiell ist. Eine genaue Lokalisierung der KSRP-Bindungsstelle ergab, dass KSRP ebenso wie HuR mit dem AU-reichen Element am 3’-Ende der 3’-UTR interagiert. KSRP und HuR sind in der Lage, um diese Bindungsstelle zu konkurrieren. Nach Zytokin-Stimulation war dementsprechend die endogene Bindung von KSRP an die iNOS-mRNA vermindert, während die endogene Bindung von HuR an die iNOS-mRNA verstärkt war. Die Stabilisierung der iNOS-mRNA nach Zytokin-Stimulation ergibt sich demnach aus einer Verminderung der Bindung des KSRP-Exosom-Komplexes an die iNOS-mRNA als Folge der verstärkten Interaktion von TTP und KSRP. Dies ermöglicht parallel eine vermehrte Bindung von HuR an die iNOS-3’-UTR und führt damit zu einer Stabilisierung der iNOS-mRNA und so letztendlich auch zu einer Erhöhung der iNOS-Expression. Außerdem konnte eine Beteiligung des Polypyrimidin-Trakt-bindenden Proteins (PTB) an der Regulation der humanen iNOS-Expression gezeigt werden. PTB erhöhte die Expression der iNOS und interagierte Zytokin-unabhängig mit KSRP. Zusammenfassend lässt sich schließen, dass ein Zusammenspiel verschiedener Proteine in einem komplexen Netzwerk für die fein abgestimmte Regulation der humanen iNOS-Expression auf post-transkriptioneller Ebene verantwortlich.
Resumo:
The contribution of neuronal nitric oxide synthase (nNOS) to angiogenesis in human skeletal muscle after endurance exercise is controversially discussed. We therefore ascertained whether the expression of nNOS is associated with the capillary density in biopsies of the vastus lateralis (VL) muscle that had been derived from 10 sedentary male subjects before and after moderate training (four 30-min weekly jogging sessions for 6 months, with a heart-rate corresponding to 75% VO(2)max). In these biopsies, nNOS was predominantly expressed as alpha-isoform with exon-mu and to a lesser extent without exon-mu, as determined by RT-PCR. The mRNA levels of nNOS were quantified by real-time PCR and related to the capillary-to-fibre ratio and the numerical density of capillaries specified by light microscopy. If the VL biopsies of all subjects were co-analysed, mRNA levels of nNOS were non-significantly elevated after training (+34%; P > 0.05). However, only five of the ten subjects exhibited significant (P ≤ 0.05) elevations in the capillary-to-fibre ratio (+25%) and the numerical density of capillaries (+21%) and were thus undergoing angiogenesis. If the VL biopsies of these five subjects alone were evaluated, the mRNA levels of nNOS were significantly up-regulated (+128%; P ≤ 0.05) and correlated positively (r = 0.8; P ≤ 0.01) to angiogenesis. Accordingly, nNOS protein expression in VL biopsies quantified by immunoblotting was significantly increased (+82%; P ≤ 0.05) only in those subjects that underwent angiogenesis. In conclusion, the expression of nNOS at mRNA and protein levels was statistically linked to capillarity after exercise suggesting that nNOS is involved in the angiogenic response to training in human skeletal muscle.
Resumo:
Nitric oxide mediates a wide array of cellular functions in many tissues. It is generated by three known isoforms of nitric oxide synthases (NOS). Recently, the endothelial isoform, NOSIII, was shown to be abundantly expressed in the rat thyroid gland and its expression increased in goitrous glands. In this study, we analyzed whether NOSIII is expressed in human thyroid tissue and whether levels of expression vary in different states of thyroid gland function. Semiquantitative RT-PCR was used to assess variations in NOSIII gene expression in seven patients with Graves' disease, one with a TSH-receptor germline mutation and six hypothyroid patients (Hashimoto's thyroiditis). Protein expression and subcellular localization were determined by immunohistochemistry (two normal thyroids, five multinodular goiters, ten hyperthyroid patients and two hypothyroid patients). NOSIII mRNA was detected in all samples: the levels were significantly higher in tissues from hyperthyroid patients compared with euthyroid and hypothyroid patients. NOSIII immunoreactivity was detected in vascular endothelial cells, but was also found in thyroid follicular cells. In patients with Graves' disease, the immunostaining was diffusely enhanced in all follicular cells. A more intense signal was observed in toxic adenomas and in samples obtained from a patient with severe hyperthyroidism due to an activating mutation in the TSH receptor. In multinodular goiters, large follicles displayed a weak signal whereas small proliferative follicles showed intense immunoreactivity near the apical plasma membrane. In hypothyroid patients, NOSIII immunoreactivity was barely detectable. In summary, NOSIII is expressed both in endothelial cells and thyroid follicular cells. The endothelial localization of NOSIII is consistent with a role for nitric oxide in the vascular control of the thyroid. NOSIII expression in thyroid follicular cells and the variations in its immunoreactivity suggest a possible role for nitric oxide in thyrocyte function and/or growth.
Resumo:
BACKGROUND: Dysfunction of the nitric oxide pathway is implicated in peripheral arterial disease. Nitric oxide synthase (NOS) isoforms and NOS activity were studied in muscle from patients with critical leg ischaemia (CLI). Alterations in NOS during revascularization surgery were also assessed. METHODS: Muscle biopsies were taken from patients with CLI undergoing amputation and also from patients undergoing femorodistal bypass at the start of surgery, after arterial clamping and following reperfusion. The presence of NOS within muscle sections was confirmed using reduced nicotinamide adenine dinucleotide phosphate diaphorase histochemistry. NOS isoform distribution was studied by immunohistochemistry. NOS mRNA and protein levels were measured using real-time reverse transcriptase-polymerase chain reaction and western blotting. NOS activity was assessed with the citrulline assay. RESULTS: All three NOS isoforms were found in muscle, associated with muscle fibres and microvessels. NOS I and III protein expression was increased in CLI (P = 0.041). During revascularization, further ischaemia and reperfusion led to a rise in NOS III protein levels (P = 0.008). NOS activity was unchanged. CONCLUSION: Alterations in NOS I and III occurred in muscle from patients with CLI and further changes occurred during bypass surgery.
Resumo:
Glutamate is the major excitatory neurotransmitter in the retina and serves as the synaptic messenger for the three classes of neurons which constitute the vertical pathway--the photoreceptors, bipolar cells and ganglion cells. In addition, the glutamate system has been localized morphologically, pharmacologically as well as molecularly during the first postnatal week of development before synaptogenesis occurs. The role which glutamate plays in the maturing visual system is complex but ranges from mediating developmental neurotoxicity to inducing neurite outgrowth.^ Nitric oxide/cGMP is a novel intercellular messenger which is thought to act in concert with the glutamate system in regulating a variety of cellular processes in the brain as well as retina, most notably neurotoxicity. Several developmental activities including programmed cell death, synapse elimination and synaptic reorganization are possible functions of cellular regulation modulated by nitric oxide as well as glutamate.^ The purpose of this thesis is to (1) biochemically characterize the endogenous pools of glutamate and determine what fraction exists extracellularly; (2) examine the morphological expression of NO producing cells in developing retina; (3) test the functional coupling of the NMDA subtype of glutamate receptor to the NO system by examining neurotoxicity which has roles in both the maturing and adult retina.^ Biochemical sampling of perfusates collected from the photoreceptor surface of ex vivo retina demonstrated that although the total pool of glutamate present at birth is relatively modest, a high percentage resides in extracellular pools. As a result, immature neurons without significant synaptic connections survive and develop in a highly glutamatergic environment which has been shown to be toxic in the adult retina.^ The interaction of the glutamate system with the NO system has been postulated to regulate neuronal survival. We therefore examined the developmental expression of the enzyme responsible for producing NO, nitric oxide synthase (NOS), using an antibody to the constitutive form of NOS found in the brain. The neurons thought to produce the majority of NO in the adult retina, a subpopulation of widefield amacrine cells, were not immunoreactive until the end of the second postnatal week. However, a unique developmental expression was observed in the ganglion cell layer and developing outer nuclear layer of the retina during the first postnatal week. We postulate NO producing neurons may not be present in a mature configuration therefore permitting neuronal survival in a highly glutamatergic microenvironment and allowing NO to play a development-specific role at this time.^ The next set of experiments constituted a functional test of the hypothesis that the absence of the prototypic NO producing cells in developing retina protects immature neurons against glutamate toxicity. An explant culture system developed in order to examine cellular responses of immature and adult neurons to glutamate toxicity showed that immature neurons were affected by NMDA but were less responsive to NMDA and NO mediated toxicity. In contrast, adult explants exhibited significant NMDA toxicity which was attenuated by NMDA antagonists, 2-amino-5-phosphonovaleric acid (APV), dextromethorphan (Dex) and N$\rm\sp{G}$-D-methyl arginine (metARG). These results indicated that pan-retinal neurotoxicity via the NMDA receptor and/or NO activation occurred in the adult retina but was not significant in the neonate. (Abstract shortened by UMI.) ^
Resumo:
The single recombinant expressing the Streptomyces coelicolor minimal whiE (spore pigment) polyketide synthase (PKS) is uniquely capable of generating a large array of well more than 30 polyketides, many of which, so far, are novel to this recombinant. The characterized polyketides represent a diverse set of molecules that differ in size (chain length) and shape (cyclization pattern). This combinatorial biosynthetic library is, by far, the largest and most complex of its kind described to date and indicates that the minimal whiE PKS does not independently control polyketide chain length nor dictate the first cyclization event. Rather, the minimal PKS enzyme complex must rely on the stabilizing effects of additional subunits (i.e., the cyclase whiE-ORFVI) to ensure that the chain reaches the full 24 carbons and cyclizes correctly. This dramatic loss of control implies that the growing polyketide chain does not remain enzyme bound, resulting in the spontaneous cyclization of the methyl terminus. Among the six characterized dodecaketides, four different first-ring cyclization regiochemistries are represented, including C7/C12, C8/C13, C10/C15, and C13/C15. The dodecaketide TW93h possesses a unique 2,4-dioxaadamantane ring system and represents a new structural class of polyketides with no related structures isolated from natural or engineered organisms, thus supporting the claim that engineered biosynthesis is capable of producing novel chemotypes.
Resumo:
Previous studies showed that thymidylate synthase (TS), as an RNA binding protein, regulates its own synthesis by impairing the translation of TS mRNA. In this report, we present evidence that p53 expression is affected in a similar manner by TS. For these studies, we used a TS-depleted human colon cancer HCT-C cell that had been transfected with either the human TS cDNA or the Escherichia coli TS gene. The level of p53 protein in transfected cells overexpressing human TS was significantly reduced when compared with its corresponding parent HCT-C cells. This suppression of p53 expression was the direct result of decreased translational efficiency of p53 mRNA. Similar results were obtained upon transfection of HCT-C cells with pcDNA 3.1 (+) containing the E. coli TS gene. These findings provide evidence that TS, from diverse species, specifically regulates p53 expression at the translational level. In addition, TS-overexpressing cells with suppressed levels of p53 are significantly impaired in their ability to arrest in G1 phase in response to exposure to a DNA-damaging agent such as γ-irradiation. These studies provide support for the in vivo biological relevance of the interaction between TS and p53 mRNA and identify a molecular pathway for controlling p53 expression.
Resumo:
(E)-α-Bisabolene synthase is one of two wound-inducible sesquiterpene synthases of grand fir (Abies grandis), and the olefin product of this cyclization reaction is considered to be the precursor in Abies species of todomatuic acid, juvabione, and related insect juvenile hormone mimics. A cDNA encoding (E)-α-bisabolene synthase was isolated from a wound-induced grand fir stem library by a PCR-based strategy and was functionally expressed in Escherichia coli and shown to produce (E)-α-bisabolene as the sole product from farnesyl diphosphate. The expressed synthase has a deduced size of 93.8 kDa and a pI of 5.03, exhibits other properties typical of sesquiterpene synthases, and resembles in sequence other terpenoid synthases with the exception of a large amino-terminal insertion corresponding to Pro81–Val296. Biosynthetically prepared (E)-α-[3H]bisabolene was converted to todomatuic acid in induced grand fir cells, and the time course of appearance of bisabolene synthase mRNA was shown by Northern hybridization to lag behind that of mRNAs responsible for production of induced oleoresin monoterpenes. These results suggest that induced (E)-α-bisabolene biosynthesis constitutes part of a defense response targeted to insect herbivores, and possibly fungal pathogens, that is distinct from induced oleoresin monoterpene production.
Resumo:
Distinct subtypes of glutamate receptors often are colocalized at individual excitatory synapses in the mammalian brain yet appear to subserve distinct functions. To address whether neuronal activity may differentially regulate the surface expression at synapses of two specific subtypes of ionotropic glutamate receptors we epitope-tagged an AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor subunit (GluR1) and an NMDA (N-methyl-d-aspartate) receptor subunit (NR1) on their extracellular termini and expressed these proteins in cultured hippocampal neurons using recombinant adenoviruses. Both receptor subtypes were appropriately targeted to the synaptic plasma membrane as defined by colocalization with the synaptic vesicle protein synaptophysin. Increasing activity in the network of cultured cells by prolonged blockade of inhibitory synapses with the γ-aminobutyric acid type A receptor antagonist picrotoxin caused an activity-dependent and NMDA receptor-dependent decrease in surface expression of GluR1, but not NR1, at synapses. Consistent with this observation identical treatment of noninfected cultures decreased the contribution of endogenous AMPA receptors to synaptic currents relative to endogenous NMDA receptors. These results indicate that neuronal activity can differentially regulate the surface expression of AMPA and NMDA receptors at individual synapses.
Resumo:
Geranyl diphosphate synthase, which catalyzes the condensation of dimethylallyl diphosphate and isopentenyl diphosphate to geranyl diphosphate, the key precursor of monoterpene biosynthesis, was purified from isolated oil glands of spearmint. Peptide fragments generated from the pure proteins of 28 and 37 kDa revealed amino acid sequences that matched two cDNA clones obtained by random screening of a peppermint-oil gland cDNA library. The deduced sequences of both proteins showed some similarity to existing prenyltransferases, and both contained a plastid-targeting sequence. Expression of each cDNA individually yielded no detectable prenyltransferase activity; however, coexpression of the two together produced functional geranyl diphosphate synthase. Antibodies raised against each protein were used to demonstrate that both subunits were required to produce catalytically active native and recombinant enzymes, thus confirming that geranyl diphosphate synthase is a heterodimer.