990 resultados para Glucocorticoid Receptor


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leite-Dellova DC, Malnic G, Mello-Aires M. Genomic and non-genomic stimulatory effect of aldosterone on H(+)-ATPase in proximal S3 segments. Am J Physiol Renal Physiol 300: F682-F691, 2011. First published December 29, 2010; doi:10.1152/ajprenal.00172.2010.-The genomic and nongenomic effects of aldosterone on the intracellular pH recovery rate (pHirr) via H(-)(+)ATPase and on cytosolic free calcium concentration ([Ca(2+)](i)) were investigated in isolated proximal S3 segments of rats during superfusion with an Na(+)-free solution, by using the fluorescent probes BCECF-AM and FLUO-4-AM, respectively. The pHirr, after cellular acidification with a NH(4)Cl pulse, was 0.064 +/- 0.003 pH units/min (n = 17/74) and was abolished with concanamycin. Aldosterone (10(-12), 10(-10),10(-8), or 10(-6) M with 1-h or 15- or 2-min preincubation) increased the pHirr. The baseline [Ca(2+)](i) was 103 +/- 2 nM (n = 58). After 1 min of aldosterone preincubation, there was a transient and dose-dependent increase in [Ca(2+)](i) and after 6-min preincubation there was a new increase in [Ca(2+)](i) that persisted after 1 h. Spironolactone [mineralocorticoid (MR) antagonist], actinomycin D, or cycloheximide did not affect the effects of aldosterone (15- or 2-min preincubation) on pHirr and on [Ca(2+)](i) but inhibited the effects of aldosterone (1-h preincubation) on these parameters. RU 486 [glucocorticoid (GR) antagonist] and dimethyl-BAPTA (Ca(2+) chelator) prevented the effect of aldosterone on both parameters. The data indicate a genomic (1 h, via MR) and a nongenomic action (15 or 2 min, probably via GR) on the H(+)-ATPase and on [Ca(2+)](i). The results are compatible with stimulation of the H(+)-ATPase by increases in [Ca(2+)](i) (at 10(-12)-10(-6) M aldosterone) and inhibition of the H(+)-ATPase by decreases in [Ca(2+)](i) (at 10(-12) or 10(-6) M aldosterone plus RU 486).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pergher PS, Leite-Dellova D, de Mello-Aires M. Direct action of aldosterone on bicarbonate reabsorption in in vivo cortical proximal tubule. Am J Physiol Renal Physiol 296: F1185-F1193, 2009. First published February 18, 2009; doi:10.1152/ajprenal.90217.2008.-The direct action of aldosterone (10(-12) M) on net bicarbonate reabsorption (J(HCO3)(-)) was evaluated by stationary microperfusion of an in vivo middle proximal tubule (S2) of rat kidney, using H ion-sensitive microelectrodes. Aldosterone in luminally perfused tubules caused a significant increase in J(HCO3)(-) from a mean control value of 2.84 +/- 0.08 [49/19 (n degrees of measurements/n degrees of tubules)] to 4.20 +/- 0.15 nmol.cm(-2).s(-1) (58/10). Aldosterone perfused into peritubular capillaries also increased J(HCO3)(-), compared with basal levels during intact capillary perfusion with blood. In addition, in isolated perfused tubules aldosterone causes a transient increase of cytosolic free calcium ([Ca(2+)](i)), monitored fluorometrically. In the presence of ethanol ( in similar concentration used to prepare the hormonal solution), spironolactone (10(-6) M, a mineralocorticoid receptor antagonist), actinomycin D (10(-6) M, an inhibitor of gene transcription), or cycloheximide (40 mM, an inhibitor of protein synthesis), the J(HCO3)(-) and the [Ca(2+)](i) were not different from the control value; these drugs also did not prevent the stimulatory effect of aldosterone on J(HCO3)(-) and on [Ca(2+)](i). However, in the presence of RU 486 alone [10(-6) M, a classic glucocorticoid receptor (GR) antagonist], a significant decrease on J(HCO3)(-) and on [Ca(2+)](i) was observed; this antagonist also inhibited the stimulatory effect of aldosterone on J(HCO3)(-) and on [Ca(2+)](i). These studies indicate that luminal or peritubular aldosterone (10(-12) M) has a direct nongenomic stimulatory effect on J(HCO3)(-) and on [Ca(2+)](i) in proximal tubule and that probably GR participates in this process. The data also indicate that endogenous aldosterone stimulates J(HCO3)(-) in middle proximal tubule.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly alpha-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics Simulations to investigate unfolding of the LBDs of thyroid hormone receptors (TRs). A molecular description of the denaturation mechanisms is obtained by molecular dynamics Simulations of the TR alpha and TR beta LBDs in the absence and in the presence of the natural ligand Triac. The Simulations Show that the thermal unfolding of the LBD starts with the loss of native contacts and secondary Structure elements, while the Structure remains essentially compact, resembling a molten globule state. This differs From most protein denaturation simulations reported to date and suggests that the folding mechanism may start with the hydrophobic collapse of the TR LBDs. Our results reveal that the stabilities of the LBDs of the TR alpha and TR beta Subtypes are affected to different degrees by the binding of the isoform selective ligand Triac and that ligand binding confers protection against thermal denaturation and unfolding in a subtype specific manner. Our Simulations indicate two mechanisms by which the ligand stabilizes the LBD: (1) by enhancing the interactions between H8 and H 11, and the interaction of the region between H I and the Omega-loop with the core of the LBD, and (2) by shielding the hydrophobic H6 from hydration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Depression is associated with glucocorticoid hypersecretion, due to dysfunction of the hypothalamo-pituitary-adrenocorticol axis (HPA-axis). Because excess glucocorticoids are associated with depressive-like features in humans, glucocorticoid receptor antagonists are currently being tested for antidepressant efficacy in clinical trials. In the current study the hypothesis that mifepristone (RU486), a glucocorticoid receptor antagonist, would decrease the neuroendocrine and central HPA-axis responses to an acute stressor and attentuate depressive like behavior in an animal model of behavioral helplessness (forced swim test) was tested. Adult male rats were treated with 10 mglkg RU486 (subcutaneous) for five days and then exposed to a IO-minute forced swim test (FST), conducted in Plexiglas cylinders. FST sessions were videotaped for later analysis of behavioral immobility. Plasma ACTH and corticosterone CORT were measured at 15min and 90min after FST cessation. Animals were perfused and brains were collected for immunocytochemical assessment of c-Fos expression in the medial prefrontal cortex (mPFC), a brain region implicated in both depression and central control of the HPA axis. RU486 significantly decreased peak ACTH and CORT concentrations following FST exposure. In addition, glucocorticoid negative feedback was at1enuated in RU486-treated animals exposed to the FST. Exposure to FST alone induced c-FOS expression in the mPFC, as measured by the number of c-Fos positive neurons. Treatment with RU486 significantly increased the number of rnPFC c-Fos positive cell following FST exposure. The behavioral data obtained from FST paradigm, demonstrated that RU486 decreased immobility in the FST illustrating the potential efficacy of this drug as an antidepressant. Collectively these data suggest that RU486 dampens HPA-axis responses to stress, possibly by enhancing the excitability of stress-inhibitory neurons in the mPFC. This is particularly exciting, given the fact that this neural region is associated with decreased neural activity during depression in humans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fructose consumption causes insulin resistance and favors hepatic gluconeogenesis through mechanisms that are not completely understood. Recent studies demonstrated that the activation of hypothalamic 5'-AMP-activated protein kinase (AMPK) controls dynamic fluctuations in hepatic glucose production. Thus, the present study was designed to investigate whether hypothalamic AMPK activation by fructose would mediate increased gluconeogenesis. Both ip and intracerebroventricular (icv) fructose treatment stimulated hypothalamic AMPK and acetyl-CoA carboxylase phosphorylation, in parallel with increased hepatic phosphoenolpyruvate carboxy kinase (PEPCK) and gluconeogenesis. An increase in AMPK phosphorylation by icv fructose was observed in the lateral hypothalamus as well as in the paraventricular nucleus and the arcuate nucleus. These effects were mimicked by icv 5-amino-imidazole-4-carboxamide-1-beta-D-ribofuranoside treatment. Hypothalamic AMPK inhibition with icv injection of compound C or with injection of a small interfering RNA targeted to AMPK alpha 2 in the mediobasal hypothalamus (MBH) suppressed the hepatic effects of ip fructose. We also found that fructose increased corticosterone levels through a mechanism that is dependent on hypothalamic AMPK activation. Concomitantly, fructose-stimulated gluconeogenesis, hepatic PEPCK expression, and glucocorticoid receptor binding to the PEPCK gene were suppressed by pharmacological glucocorticoid receptor blockage. Altogether the data presented herein support the hypothesis that fructose-induced hypothalamic AMPK activation stimulates hepatic gluconeogenesis by increasing corticosterone levels. (Endocrinology 153: 3633-3645, 2012)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The transition from gestation to lactation is characterized by a robust adaptation of maternal pancreatic beta-cells. Consistent with the loss of beta-cell mass, glucose-induced insulin secretion is down-regulated in the islets of early lactating dams. Extensive experimental evidence has demonstrated that the surge of prolactin is responsible for the morphofunctional remodeling of the maternal endocrine pancreas during pregnancy, but the precise molecular mechanisms by which this phenotype is rapidly reversed after delivery are not completely understood. This study investigated whether glucocorticoid-regulated expression of Rasd1/Dexras, a small inhibitoryGprotein, is involved in this physiological plasticity. Immunofluorescent staining demonstrated that Rasd1 is localized within pancreatic beta-cells. Rasd1 expression in insulin-secreting cells was increased by dexamethasone and decreased by prolactin. In vivo data confirmed that Rasd1 expression is decreased in islets from pregnant rats and increased in islets from lactating mothers. Knockdown of Rasd1 abolished the inhibitory effects of dexamethasone on insulin secretion and the protein kinase A, protein kinase C, and ERK1/2 pathways. Chromatin immunoprecipitation experiments revealed that glucocorticoid receptor (GR) and signal transducer and activator of transcription 5b (STAT5b) cooperatively mediate glucocorticoid-induced Rasd1 expression in islets. Prolactin inhibited the stimulatory effect of GR/STAT5b complex on Rasd1 transcription. Overall, our data indicate that the stimulation of Rasd1 expression by glucocorticoid at the end of pregnancy reverses the increased insulin secretion that occurs during pregnancy. Prolactin negatively regulates this pathway by inhibiting GR/STAT5b transcriptional activity on the Rasd1 gene. (Endocrinology 153: 3668-3678, 2012)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A low-protein, high-carbohydrate (LPHC) diet for 15 days increased the lipid content in the carcass and adipose tissues of rats. The aim of this work was to investigate the mechanisms of this lipid increase in the retroperitoneal white adipose tissue (RWAT) of these animals. The LPHC diet induced an approximately two- and tenfold increase in serum corticosterone and TNF-alpha, respectively. The rate of de novo fatty acid (FA) synthesis in vivo was reduced (50%) in LPHC rats, and the lipoprotein lipase activity increased (100%). In addition, glycerokinase activity increased (60%), and the phosphoenolpyruvate carboxykinase content decreased (27%). Basal [U-C-14]-glucose incorporation into glycerol-triacylglycerol did not differ between the groups; however, in the presence of insulin, [U-C-14]-glucose incorporation increased by 124% in adipocytes from only control rats. The reductions in IRS1 and AKT content as well as AKT phosphorylation in the RWAT from LPHC rats and the absence of an insulin response suggest that these adipocytes have reduced insulin sensitivity. The increase in NE turnover by 45% and the lack of a lipolytic response to NE in adipocytes from LPHC rats imply catecholamine resistance. The data reveal that the increase in fat storage in the RWAT of LPHC rats results from an increase in FA uptake from circulating lipoproteins and glycerol phosphorylation, which is accompanied by an impaired lipolysis that is activated by NE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: The development of the gastrointestinal tract depends on many elements, including glucocorticoids. In the current study, we evaluated the effects of early weaning on corticosterone function and the growth of rat gastric mucosa. Methods: By using Wistar rats submitted to early weaning at 15 d, we analyzed plasma corticosterone, corticosteroid-binding globulin (CBG), and glucocorticoid receptor (GR) distribution in the gastric epithelium. Results: With the use of radioimmunoassay, we found that early weaning increased corticosterone concentration at day 16 and 17 in test subjects as compared with controls, whereas it was equivalent between groups at day 18. CBG binding capacity decreased during treatment, and it was significantly lower at day 18. At this age, GR levels and distribution in the gastric mucosa were also reduced as compared with suckling counterparts. To reduce corticosterone activity during early weaning and to explore cell proliferation responses, we administered RU486 to 15-d-old pups. We found that cytoplasmic GR reached a peak after 48 h, whereas nuclear levels remained constant, thereby confirming the inhibition of receptor function. Next, by checking gastric proliferative responses, we observed that RU486 induced higher DNA synthesis and mitotic indices in test subjects as compared with control groups. Conclusions: We demonstrated that early weaning changed corticosterone activity by increasing hormone levels, reducing CBG binding capacity, and decreasing GR distribution in the gastric epithelium. These modifications seem to be important to the reorganization of gastric growth after the abrupt interruption of suckling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Major depression belongs to the most serious and widespread psychiatric disorders in today’s society. There is a great need for the delineation of the underlying molecular mechanisms as well as for the identification of novel targets for its treatment. In this thesis, transgenic mice of the endocannabinoid and the corticotropin-releasing hormone (CRH) system were investigated to determine the putative role of these systems for depression-like phenotypes in mice. In the first part of the thesis, we found that the endocannabinoid system was prominently involved in a brain region-specific and temporally controlled manner in acute as well as in chronic stress processing. Genetic deletion in combination with pharmacological intervention revealed the importance of a fully functional endocannabinoid system for efficient neuroendocrine and behavioral stress coping. Accordingly, cannabinoid type 1 (CB1) receptor-deficient mice displayed several depression-like symptoms and molecular alterations, including “behavioral despair”, stress hormone hypersecretion and decreased glucocorticoid receptor and brain-derived neurotrophic factor expression in the hippocampus. However, the endocannabinoid system was dispensable for the efficacy of currently used antidepressant drugs. To facilitate future endocannabinoid research, a transgenic mouse was generated, which overexpressed the CB1 receptor protein fused to a fluorescent protein. In the second part of the thesis, conditional brain region-specific CRH overexpressing mice were evaluated as a model for pathological chronic CRH hyperactivation. Mutant mice showed aberrant neuroendocrine and behavioral stress coping and hyperarousal due to CRH-induced activation of the noradrenergic system in the brain. Mutant mice appeared to share similarities with naturally occurring endogenous CRH activation in wild-type mice and were sensitive to acute pharmacological blockade of CRH receptor type 1 (CRH-R1). Thus, CRH overexpressing mice serve as an ideal in vivo tool to evaluate the efficacy of novel CRH-R1 antagonists. Together, these findings highlight the potential of transgenic mice for the understanding of certain endo-phenotypes (isolated symptoms) of depression and their molecular correlates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An der Entwicklung und Aufrechterhaltung chronisch-inflammatorischer Erkrankungen wie der rheumatoiden Arthritis (RA) ist die Fehlregulation verschiedener pro-inflammatorischer Gene von entscheidender Bedeutung. Bei der RA führt unter anderem eine erhöhte Expression der induzierbaren NO-Synthase (iNOS) zu einer gesteigerten NO-Produktion, was schließlich zum Knochenabbau beiträgt. Für eine Therapie der RA werden häufig Glukokortikoide eingesetzt, die jedoch viele Nebenwirkungen zeigen. Um eine mögliche Therapiealternative zu identifizieren, sollten die Effekte des anti-inflammatorisch wirksamen Pilzmetaboliten S-Curvularin in verschiedenen Modellen der RA analysiert werden.rnIn humanen C-28/I2-Chondrozyten als in vitro-Modell der RA führte die Inkubation mit einem Zytokingemisch zu einer Induktion der iNOS-Expression, die vom chondrogenen Differenzierungsgrad der Zellen abhängig war. Entscheidend für die iNOS-Induktion in C-28/I2-Zellen ist hauptsächlich der p38-MAPK-, der JAK-STAT- und der NF-kappa B-Signaltransduktionsweg. Eine Inkubation der Zellen mit S-Curvularin führte zu einer deutlichen Hemmung der iNOS-Expression. Dexamethason hatte hingegen keinen Effekt auf die iNOS-Expression, was vermutlich auf die fehlende Expression der Glukokortikoidrezeptor-mRNA zurückgeführt werden kann. Daher können von S-Curvularin abgeleitete Pharmaka möglicherweise auch in Fällen einer Steroidresistenz zur Therapie von RA-Patienten zum Einsatz kommen.rnIm Tiermodell der Kollagen-induzierten Arthritis konnte die anti-inflammatorische Wirkung von S-Curvularin auf mehreren Ebenen bestätigt werden. Die Pilzsubstanz reduzierte sowohl die Schwellung der Pfoten als auch die Expression CII-induzierter pro-inflammatorischer Gene, wie z.B. S100A8, Defb6, Camp und Mpo. Dabei waren die Effekte von S-Curvularin meist deutlicher als in Dexamethason-behandelten Mäusen. Die Analyse von Zytokinen (z.B. TNF-alpha, IL-1beta) und Chemokinen (z.B. MCP-1, MIP-1alpha) zeigte, dass die CII-induzierte Expression dieser pro-inflammatorischen Mediatoren in den Pfoten der Mäuse durch eine Therapie mit S-Curvularin und Dexamethason wieder reduziert werden konnte, wobei Unterschiede zwischen den Behandlungen beobachtet werden konnte.rnAuch im Tiermodell der LPS-induzierten akuten Entzündung wurde die iNOS- und die S100A8-Expression in verschiedenen Geweben S-Curvularin reduziert. rnrnS-Curvularin ist also in der Lage, in verschiedenen Modellen der RA und im akuten Entzündungsmodell die pro-inflammatorische Genexpression effizient zu hemmen und könnte somit in Zukunft eine Rolle in der Therapie der RA einnehmen.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neutral ceramidase (NCDase) and sphingosine kinases (SphKs) are key enzymes regulating cellular sphingosine-1-phosphate (S1P) levels. In this study we found that stress factor-induced apoptosis of rat renal mesangial cells was significantly reduced by dexamethasone treatment. Concomitantly, dexamethasone increased cellular S1P levels, suggesting an activation of sphingolipid-metabolizing enzymes. The cell-protective effect of glucocorticoids was reversed by a SphK inhibitor, was completely absent in SphK1-deficient cells, and was associated with upregulated mRNA and protein expression of NCDase and SphK1. Additionally, in vivo experiments in mice showed that dexamethasone also upregulated SphK1 mRNA and activity, and NCDase protein expression in the kidney. Fragments (2285, 1724, and 1126 bp) of the rat NCDase promoter linked to a luciferase reporter were transfected into rat kidney fibroblasts and mesangial cells. There was enhanced NCDase promoter activity upon glucocorticoids treatment that was abolished by the glucocorticoid receptor antagonist RU-486. Single and double mutations of the two putative glucocorticoid response element sites within the promoter reduced the dexamethasone effect, suggesting that both glucocorticoid response elements are functionally active and required for induction. Our study shows that glucocorticoids exert a protective effect on stress-induced mesangial cell apoptosis in vitro and in vivo by upregulating NCDase and SphK1 expression and activity, resulting in enhanced levels of the protective lipid second messenger S1P.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During pregnancy, trophoblasts grow to adapt the feto-maternal unit to fetal requirements. Aldosterone and cortisol levels increase, the latter being inactivated by a healthy placenta. By contrast, preeclamptic placental growth is reduced while aldosterone levels are low and placental cortisol tissue levels are high due to improper deactivation. Aldosterone acts as a growth factor in many tissues, whereas cortisol inhibits growth. We hypothesized that in preeclampsia low aldosterone and enhanced cortisol availability might mutually affect placental growth and function. Proliferation of cultured human trophoblasts was time- and dose-dependently increased with aldosterone (P < 0.04 to P < 0.0001) and inhibited by spironolactone and glucocorticoids (P < 0.01). Mineralo- and glucocorticoid receptor expression and activation upon agonist stimulation was verified by visualization of nuclear translocation of the receptors. Functional aldosterone deficiency simulated in pregnant mice by spironolactone treatment (15 μg/g body weight/day) led to a reduced fetal umbilical blood flow (P < 0.05). In rat (P < 0.05; R(2) = 0.2055) and human (X(2) = 3.85; P = 0.0249) pregnancy, placental size was positively related to plasma aldosterone. Autocrine production of these steroid hormones was excluded functionally and via the absence of specific enzymatic transcripts for CYP11B2 and CYP11B1. In conclusion, activation of mineralocorticoid receptors by maternal aldosterone appears to be required for trophoblast growth and a normal feto-placental function. Thus, low aldosterone levels and enhanced cortisol availability may be one explanation for the reduced placental size in preeclampsia and related disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reduced activity of 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) plays a role in essential hypertension and the sensitivity of blood pressure to dietary salt. Nonconservative mutations in the coding region are extremely rare and do not explain the variable 11beta-HSD2 activity. We focused therefore on the 5'-regulatory region and identified and characterized the first promoter polymorphisms. Transfections of variants G-209A and G-126A into SW620 cells reduced promoter activity and affinity for activators nuclear factor 1 (NF1) and Sp1. Chromatin immunoprecipitation revealed Sp1, NF1, and glucocorticoid receptor (GR) binding to the HSD11B2 promoter. Dexamethasone induced expression of mRNA and activity of HSD11B2. GR and/or NF1 overexpression increased endogenous HSD11B2 mRNA and activity. GR complexes cooperated with NF1 to activate HSD11B2, an effect diminished in the presence of the G-209A variant. When compared to salt-resistant subjects (96), salt-sensitive volunteers (54) more frequently had the G-209A variant, higher occurrence of alleles A4/A7 of polymorphic microsatellite marker, and higher urinary ratios of cortisol to cortisone metabolites. First, we conclude that the mechanism of glucocorticoid-induced HSD11B2 expression is mainly mediated by cooperation between GR and NF1 on the HSD11B2 promoter and, second, that the newly identified promoter variants reduce activity and cooperation of cognate transcription factors, resulting in diminished HSD11B2 transcription, an effect favoring salt sensitivity.