292 resultados para Glottal airflow


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural sounds are structured on many time-scales. A typical segment of speech, for example, contains features that span four orders of magnitude: Sentences ($\sim1$s); phonemes ($\sim10$−$1$ s); glottal pulses ($\sim 10$−$2$s); and formants ($\sim 10$−$3$s). The auditory system uses information from each of these time-scales to solve complicated tasks such as auditory scene analysis [1]. One route toward understanding how auditory processing accomplishes this analysis is to build neuroscience-inspired algorithms which solve similar tasks and to compare the properties of these algorithms with properties of auditory processing. There is however a discord: Current machine-audition algorithms largely concentrate on the shorter time-scale structures in sounds, and the longer structures are ignored. The reason for this is two-fold. Firstly, it is a difficult technical problem to construct an algorithm that utilises both sorts of information. Secondly, it is computationally demanding to simultaneously process data both at high resolution (to extract short temporal information) and for long duration (to extract long temporal information). The contribution of this work is to develop a new statistical model for natural sounds that captures structure across a wide range of time-scales, and to provide efficient learning and inference algorithms. We demonstrate the success of this approach on a missing data task.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human listeners can identify vowels regardless of speaker size, although the sound waves for an adult and a child speaking the ’same’ vowel would differ enormously. The differences are mainly due to the differences in vocal tract length (VTL) and glottal pulse rate (GPR) which are both related to body size. Automatic speech recognition machines are notoriously bad at understanding children if they have been trained on the speech of an adult. In this paper, we propose that the auditory system adapts its analysis of speech sounds, dynamically and automatically to the GPR and VTL of the speaker on a syllable-to-syllable basis. We illustrate how this rapid adaptation might be performed with the aid of a computational version of the auditory image model, and we propose that an auditory preprocessor of this form would improve the robustness of speech recognisers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The airflow between the fast-moving substrate and stationary print heads in a web print press may cause print quality issues in high-speed, roll-to-roll printing applications. We have studied the interactions between ink drops and the airflow in the gap between the printhead and substrate, by using an experimental flow channel and high-speed imaging. The results show: 1) the gap airflow is well approximated by a standard Couette flow profile; 2) the effect of gap airflow on the flight paths of main drops and satellites is negligible; and 3) the interaction between the gap airflow and the wakes from the printed ink drops should be investigated as the primary source of aerodynamically- related print quality issues. ©2012 Society for Imaging Science and Technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physiological responses of Nitzschia palea Kutzing, a freshwater diatom, to elevated CO2 were investigated and compared with those of a marine diatom, Chaetoceros muelleri Lemmermann previously reported. Elevated CO2 concentration to 700 mu l/L increased the dissolved inorganic carbon (DIC) and lowered the pH in the cultures of N. palea, thus enhancing the growth by 4%-20% during the whole growth period. High CO2-grown N. palea cells showed lower levels of dark respiration rates and higher I (k) values. Light-saturated photosynthetic rates and photosynthetic efficiencies decreased in N. palea with the doubling CO2 concentration in airflow to the bottom of cultures, although the doubling CO2 concentration in airflow to the surface cultures had few effects on these two photosynthetic parameters. N. palea cells were found to be capable of using HCO3 (-) in addition to gaseous CO2, and the CO2 enrichment decreased their affinity for HCO3 (-) and CO2. Although doubled CO2 level would enhance the biomass of N. palea and C. muelleri to different extents, compared with the marine diatom, it had a significant effect on the specific growth rates of N. palea. In addition, the responses of photosynthetic parameters of N. palea to doubled CO2 concentration were almost opposite to those of C. muelleri.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microcystis aeruginosa Kutz. 7820 was cultured at 350 and 700 muL.L-1 CO2 to assess the impacts of doubled atmospheric CO2 concentration on this bloom-forming cyanobacterium. Doubling Of CO2 concentration in the airflow enhanced its growth by 52%-77%, with pH values decreased and dissolved inorganic carbon (DIC) increased in the medium. Photosynthetic efficiencies and dark respiratory rates expressed per unit chl a tended to increase with the doubling of CO2. However, saturating irradiances for photosynthesis and light-saturated photosynthetic rates normalized to cell number tended to decrease with the increase of DIC in the medium. Doubling of CO2 concentration in the airflow had less effect on DIC-saturated photosynthetic rates and apparent photosynthetic affinities for DIC. In the exponential phase, CO2 and HCO3- levels in the medium were higher than those required to saturate photosynthesis. Cultures with surface aeration were DIC limited in the stationary phase. The rate of CO2 dissolution into the liquid increased proportionally when CO2 in air was raised from 350 to 700 muL.L-1, thus increasing the availability of DIC in the medium and enhancing the rate of photosynthesis. Doubled CO2 could enhance CO2 dissolution, lower pH values, and influence the ionization fractions of various DIC species even when the photosynthesis was not DIC limited. Consequently, HCO3- concentrations in cultures were significantly higher than in controls, and the photosynthetic energy cost for the operation of CO2 concentrating mechanism might decrease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supersonic model combustors using two-stage injections of supercritical kerosene were experimentally investigated in both Mach 2.5 and 3.0 model combustors with stagnation temperatures of approximately 1,750 K. Supercritical kerosene of approximately 760 K was prepared and injected in the overall equivalence ratio range of 0.5-1.46. Two pairs of integrated injector/flameholder cavity modules in tandem were used to facilitate fuel-air mixing and stable combustion. For single-stage fuel injection at an upstream location, it was found that the boundary layer separation could propagate into the isolator with increasing fuel equivalence ratio due to excessive local heat release, which in turns changed the entry airflow conditions. Moving the fuel injection to a further downstream location could alleviate the problem, while it would result in a decrease in combustion efficiency due to shorter fuel residence time. With two-stage fuel injections the overall combustor performance was shown to be improved and kerosene injections at fuel rich conditions could be reached without the upstream propagation of the boundary layer separation into the isolator. Furthermore, effects of the entry Mach number and pilot hydrogen on combustion performance were also studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The parallelization of an industrially important in-house computational fluid dynamics (CFD) code for calculating the airflow over complex aircraft configurations using the Euler or Navier–Stokes equations is presented. The code discussed is the flow solver module of the SAUNA CFD suite. This suite uses a novel grid system that may include block-structured hexahedral or pyramidal grids, unstructured tetrahedral grids or a hybrid combination of both. To assist in the rapid convergence to a solution, a number of convergence acceleration techniques are employed including implicit residual smoothing and a multigrid full approximation storage scheme (FAS). Key features of the parallelization approach are the use of domain decomposition and encapsulated message passing to enable the execution in parallel using a single programme multiple data (SPMD) paradigm. In the case where a hybrid grid is used, a unified grid partitioning scheme is employed to define the decomposition of the mesh. The parallel code has been tested using both structured and hybrid grids on a number of different distributed memory parallel systems and is now routinely used to perform industrial scale aeronautical simulations. Copyright © 2000 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Software technology that predicts stress in electronic systems and packages, developed as part of TCS Programme, is described. The software is closely integrated within a thermal design tool providing the ability to simulate the coupled effects of airflow, temperature and stress on product performance. This integrated approach to analysis will help decrease the number of design cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At 8.18pm on 2 September 1998, Swissair Flight 111 (SR 111), took off from New York’s JFK airport bound for Geneva, Switzerland. Tragically, the MD-11 aircraft never arrived. According to the crash investigation report, published on 27 March 2003, electrical arcing in the ceiling void cabling was the most likely cause of the fire that brought down the aircraft. No one on board was aware of the disaster unfolding in the ceiling of the aircraft and, when a strange odour entered the cockpit, the pilots thought it was a problem with the air-conditioning system. Twenty minutes later, Swissair Flight 111 plunged into the Atlantic Ocean five nautical miles southwest of Peggy’s Cove, Nova Scotia, with the loss of all 229 lives on board. In this paper, the Computational Fluid Dynamics (CFD) analysis of the in-flight fire that brought down SR 111 is described. Reconstruction of the wreckage disclosed that the fire pattern was extensive and complex in nature. The fire damage created significant challenges to identify the origin of the fire and to appropriately explain the heat damage observed. The SMARTFIRE CFD software was used to predict the “possible” behaviour of airflow as well as the spread of fire and smoke within SR 111. The main aims of the CFD analysis were to develop a better understanding of the possible effects, or lack thereof, of numerous variables relating to the in-flight fire. Possible fire and smoke spread scenarios were studied to see what the associated outcomes would be. This assisted investigators at Transportation Safety Board (TSB) of Canada, Fire & Explosion Group in assessing fire dynamics for cause and origin determination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heat is extracted away from an electronic package by convection, conduction, and/or radiation. The amount of heat extracted by forced convection using air is highly dependent on the characteristics of the airflow around the package which includes its velocity and direction. Turbulence in the air is also important and is required to be modeled accurately in thermal design codes that use computational fluid dynamics (CFD). During air cooling the flow can be classified as laminar, transitional, or turbulent. In electronics systems, the flow around the packages is usually in the transition region, which lies between laminar and turbulent flow. This requires a low-Reynolds number numerical model to fully capture the impact of turbulence on the fluid flow calculations. This paper provides comparisons between a number of turbulence models with experimental data. These models included the distance from the nearest wall and the local velocity (LVEL), Wolfshtein, Norris and Reynolds, k-ε, k-ω, shear-stress transport (SST), and kε/kl models. Results show that in terms of the fluid flow calculations most of the models capture the difficult wake recirculation region behind the package reasonably well, although for packages whose heights cause a high degree of recirculation behind the package the SST model appears to struggle. The paper also demonstrates the sensitivity of the models to changes in the mesh density; this study is aimed specifically at thermal design engineers as mesh independent simulations are rarely conducted in an industrial environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1998, Swissair Flight I I I (SR111) developed an in-flight fire shortly after take-off which resulted in the loss of the aircraft, a McDonnell Douglas MD-I 1, and all passengers and crew. The Transportation Safety Board (TSB) of Canada, Fire and Explosion Group launched a four year investigation into the incident in an attempt to understand the cause and subsequent mechanisms which lead to the rapid spread of the in-flight fire. As part of this investigation, the SMARTFIRE Computational Fluid Dynamics (CFD) software was used to predict the 'possible' development of the fire and associated smoke movement. In this paper the CFD fire simulations are presented and model predictions compared with key findings from the investigation. The model predictions are shown to be consistent with a number of the investigation findings associated with the early stages of the fire development. The analysis makes use of simulated pre-fire airflow conditions within the MD-11 cockpit and above ceiling region presented in an earlier publication (Part 1) which was published in The Aeronautical Journal in January 2006(4).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At present the vast majority of Computer-Aided- Engineering (CAE) analysis calculations for microelectronic and microsystems technologies are undertaken using software tools that focus on single aspects of the physics taking place. For example, the design engineer may use one code to predict the airflow and thermal behavior of an electronic package, then another code to predict the stress in solder joints, and then yet another code to predict electromagnetic radiation throughout the system. The reason for this focus of mesh-based codes on separate parts of the governing physics is essentially due to the numerical technologies used to solve the partial differential equations, combined with the subsequent heritage structure in the software codes. Using different software tools, that each requires model build and meshing, leads to a large investment in time, and hence cost, to undertake each of the simulations. During the last ten years there has been significant developments in the modelling community around multi- physics analysis. These developments are being followed by many of the code vendors who are now providing multi-physics capabilities in their software tools. This paper illustrates current capabilities of multi-physics technology and highlights some of the future challenges

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents modelling and design optimization of a microfeeder which, as part of a microassembly system, is used for contactless object delivery. The microfeeder consists of an array of microactuators which are controlled by electrostatic actuation and used for maneuvering outcoming air jet for object hovering and delibery. The airflow behaviour in the microactuator is analysed by means of fluid mechanics and Computational Fluid Dynamics (CFD) simulation from three aspects, theoretical analysis, initial design assessment, and design modifications. The focus is put on the basic types of the microfeeder structure and the effects of structural details to the systematic performance. The structural pattern of the microactuator for forming airflow nozzle is identified and two design plans are proposed as basic structure patterns of pneumatic microactuators. The optimized design numerically shows the ability of delivering objects. This paper analyses the flow distribution pattern in microactuators and points out a way for effective design of pneumatic microfeeder systems. The optimization strategy provided by the present paper has close relevance to the design and manufacture of pneumatic microfeeder systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extent to which North Atlantic Holocene climatic perturbations influenced past human societies is an area of considerable uncertainty and fierce debate. Ireland is ideally placed to help resolve this issue, being occupied for over 9000 yr and located on the eastern Atlantic seaboard, a region dominated by westerly airflow. Irish bog and lake tree populations provide unambiguous evidence of major shifts in surface moisture through the Holocene similar to cycles recorded in the marine realm of the North Atlantic, indicating significant changes in the latitude and intensity of zonal atmospheric circulation across the region. To test for human response to these cycles we summed the probabilities of 465 radiocarbon ages obtained from Irish archaeological contexts and observe enhanced archaeological visibility during periods of sustained wet conditions. These results suggest either increasing density of human populations in key, often defensive locations, and/or the development of subsistence strategies to overcome changing conditions, the latter recently proposed as a significant factor in avoiding societal collapse. Regardless, we demonstrate environmental change is a significantly more important factor in influencing human activity in the landscape than has hitherto been acknowledged.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some critical avionic systems require cooling air via vents on the side of the aircraft, thus creating leakage points for high-intensity electromagnetic radiation. This paper presents a novel application of high-intensity radiated field (HIRF) shielding using a rectangular waveguide array, while maintaining cooling airflow requirements. Signal attenuation versus frequency and depth of the array has been calculated using closed-form equations. The simulation and measurement results are in good agreement with the calculated values. (C) 2004 Wiley Periodicals, Inc.