1000 resultados para Glacial sedimentation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climatic and oceanographic changes, as occurring at a glacial-interglacial scale, may alter the environmental conditions needed for the development of prolific cold-water coral reefs and mounds. Studies constraining the temporal distribution of cold-water corals in the NE Atlantic suggested the cyclic changes of the Atlantic Meridional Overturning Circulation as the main driver for the development and dispersal of cold-water coral ecosystems. However, conclusions were hindered by lack of data from the NW Atlantic. Aiming to overcome this lack of data, the temporal occurrence of cold-water corals in the Cape Lookout area along the southeastern US margin was explored by U-series dating. Furthermore, the local influence of the regional water masses, namely the Gulf Stream, on cold-water coral proliferation and occurrence since the Last Glacial Maximum was examined. Results suggest that the occurrence of cold-water corals in the Cape Lookout area is restricted to interglacial periods, with corals being present during the last ~7 kyr and also during the Eemian (~125 ka). The reconstructed local environmental conditions suggest an offshore displacement of the Gulf Stream and increased influence from the Mid-Atlantic Bight shelf waters during the last glacial period. During the deglacial sea level rise, the Gulf Stream moved coastward providing present-day-like conditions to the surface waters. Nevertheless, present-day conditions at the ocean sea floor were not established before 7.5 cal ka BP once the ultimate demise of the Laurentide ice-sheet caused the final sea level rise and the displacement of the Gulf Stream to its present location. Occasional presence of the Gulf Stream over the site during the Mid- to Late Holocene coincides with enhanced bottom current strength and a slightly higher bottom water temperature, which are environmental conditions that are favorable for cold-water coral growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructural (fabric, forces and composition) changes due to hydrocarbon contamination in a clay soil were studied using Scanning Electron Microscope (micro-fabric analysis), Atomic Force Microscope (forces measurement) and sedimentation bench test (particle size measurements). The non-polluted and polluted glacial till from north-eastern Poland (area of a fuel terminal) were used for the study. Electrostatic repelling forces for the polluted sample were much lower than for the non-polluted sample. In comparison to non-polluted sample, the polluted sample exhibited lower electric charge, attractive forces on approach and strong adhesion on retrieve. The results of the sedimentation tests indicate that clay particles form larger aggregates and settle out of the suspension rapidly in diesel oil. In non-polluted soil, the fabric is strongly aggregated – densely packed, dominate the face-to-face and edge-to-edge types of contacts, clay film tightly adheres to the surface of larger grains and interparticle pores are more common. In polluted soil, the clay matrix is less aggregated – loosely packed, dominate the edge-to-face types of contacts and inter-micro-aggregate pores are more frequent. Substantial differences were observed in the morphometric and geometrical parameters of pore space. The polluted soil micro-fabric proved to be more isotropic and less oriented than in non-polluted soil. The polluted soil, in which electrostatic forces were suppressed by hydrocarbon interaction, displays more open porosity and larger voids than non-polluted soil, which is characterized by occurrence of the strong electrostatic interaction between clay particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neoproterozoic glacigenic formations are preserved in the Kimberley region and northwestern Northern Territory of northern Australia. They are distributed in the west Kimberley adjacent to the northern margins of the King Leopold Orogen, the Mt Ramsay area at the junction of the King Leopold and Halls Creek Orogens, and the east Kimberley, adjacent to the eastern margin of the Halls Creek Orogen. Small outlier glacigenic deposits are preserved in the Litchfield Province, Northern Territory (Uniya Formation) and Georgina Basin, western Queensland (Little Burke Formation). Glacigenic strata comprise diamictite, conglomerate, sandstone and pebbly mudstone and characterize the Walsh, Landrigan and Fargoo/Moonlight Valley formations. Thin units of laminated dolomite sit conformably at the top of the Walsh, Landrigan and Moonlight Valley formations. Glacigenic units are also interbedded with the carbonate platform deposits of the Egan Formation and Boonall Dolomite. δ13C data are available for all carbonate units. There is no direct chronological constraint on these successions. Dispute over regional correlation of the Neoproterozoic succession has been largely resolved through biostratigraphic, chemostratigraphic and lithostratigraphic analysis. However, palaeomagnetic results from the Walsh Formation are inconsistent with sedimentologically based correlations. Two stratigraphically defined glaciations are preserved in northwestern Australia: the ‘Landrigan Glaciation’, characterized by southwest-directed continental ice-sheet movement and correlated with late Cryogenian glaciation elsewhere in Australia and the world; and, the ‘Egan Glaciation’, a more localized glaciation of the Ediacaran Period. Future research focus should include chronology, palaeomagnetic constraint and tectonostratigraphic controls on deposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been known since Rhodes Fairbridge’s first attempt to establish a global pattern of Holocene sea-level change by combining evidence from Western Australia and from sites in the northern hemisphere that the details of sea-level history since the Last Glacial Maximum vary considerably across the globe. The Australian region is relatively stable tectonically and is situated in the ‘far-field’ of former ice sheets. It therefore preserves important records of post-glacial sea levels that are less complicated by neotectonics or glacio-isostatic adjustments. Accordingly, the relative sea-level record of this region is dominantly one of glacio-eustatic (ice equivalent) sea-level changes. The broader Australasian region has provided critical information on the nature of post-glacial sea level, including the termination of the Last Glacial Maximum when sea level was approximately 125 m lower than present around 21,000–19,000 years BP, and insights into meltwater pulse 1A between 14,600 and 14,300 cal. yr BP. Although most parts of the Australian continent reveals a high degree of tectonic stability, research conducted since the 1970s has shown that the timing and elevation of a Holocene highstand varies systematically around its margin. This is attributed primarily to variations in the timing of the response of the ocean basins and shallow continental shelves to the increased ocean volumes following ice-melt, including a process known as ocean siphoning (i.e. glacio-hydro-isostatic adjustment processes). Several seminal studies in the early 1980s produced important data sets from the Australasian region that have provided a solid foundation for more recent palaeo-sea-level research. This review revisits these key studies emphasising their continuing influence on Quaternary research and incorporates relatively recent investigations to interpret the nature of post-glacial sea-level change around Australia. These include a synthesis of research from the Northern Territory, Queensland, New South Wales, South Australia and Western Australia. A focus of these more recent studies has been the re-examination of: (1) the accuracy and reliability of different proxy sea-level indicators; (2) the rate and nature of post-glacial sea-level rise; (3) the evidence for timing, elevation, and duration of mid-Holocene highstands; and, (4) the notion of mid- to late Holocene sea-level oscillations, and their basis. Based on this synthesis of previous research, it is clear that estimates of past sea-surface elevation are a function of eustatic factors as well as morphodynamics of individual sites, the wide variety of proxy sea-level indicators used, their wide geographical range, and their indicative meaning. Some progress has been made in understanding the variability of the accuracy of proxy indicators in relation to their contemporary sea level, the inter-comparison of the variety of dating techniques used and the nuances of calibration of radiocarbon ages to sidereal years. These issues need to be thoroughly understood before proxy sea-level indicators can be incorporated into credible reconstructions of relative sea-level change at individual locations. Many of the issues, which challenged sea-level researchers in the latter part of the twentieth century, remain contentious today. Divergent opinions remain about: (1) exactly when sea level attained present levels following the most recent post-glacial marine transgression (PMT); (2) the elevation that sea-level reached during the Holocene sea-level highstand; (3) whether sea-level fell smoothly from a metre or more above its present level following the PMT; (4) whether sea level remained at these highstand levels for a considerable period before falling to its present position; or (5) whether it underwent a series of moderate oscillations during the Holocene highstand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thick piles of late-Archean volcaniclastic sedimentary successions that overlie the voluminous greenstone units of the eastern Yilgarn Craton, Western Australia, record the important transition from the cessation in mafic-ultramafic volcanism to cratonisation between about 2690 and 2655 Ma. Unfortunately, an inability to clearly subdivide the superficially similar sedimentary successions and correlate them between the various geological terranes and domains of the eastern Yilgarn Craton has led to uncertainty about the timing and nature of the region's palaeogeographic and palaeotectonic evolution. Here, we present the results of some 2025 U–Pb laser-ablation-ICP-MS analyses and 323 Sensitive High-Resolution Ion Microprobe (SHRIMP) analyses of detrital zircons from 14 late-Archean felsic clastic successions of the eastern Yilgarn Craton, which have enabled correlation of clastic successions. The results of our data, together with those compiled from previous studies, show that the post-greenstone sedimentary successions include two major cycles that both commenced with voluminous pyroclastic volcanism and ended with widespread exhumation and erosion associated with granite emplacement. Cycle One commences with an influx of rapidly reworked feldspar-rich pyroclastic debris. These units, here-named the Early Black Flag Group, are dominated by a single population of detrital zircons with an average age of 2690–2680 Ma. Thick (up to 2 km) dolerite bodies, such as the Golden Mile Dolerite, intrude the upper parts of the Early Black Flag Group at about 2680 Ma. Incipient development of large granite domes during Cycle One created extensional basins predominantly near their southeastern and northwestern margins (e.g., St Ives, Wallaby, Kanowna Belle and Agnew), into which the Early Black Flag Group and overlying coarse mafic conglomerate facies of the Late Black Flag Group were deposited. The clast compositions and detrital-zircon ages of the late Black Flag Group detritus match closely the nearby and/or stratigraphically underlying successions, thus suggesting relatively local provenance. Cycle Two involved a similar progression to that observed in Cycle One, but the age and composition of the detritus were notably different. Deposition of rapidly reworked quartz-rich pyroclastic deposits dominated by a single detrital-zircon age population of 2670–2660 Ma heralded the beginning of Cycle Two. These coarse-grained quartz-rich units, are name here the Early Merougil Group. The mean ages of the detrital zircons from the Early Merougil Group match closely the age of the peak in high-Ca (quartz-rich) granite magmatism in the Yilgarn Craton and thus probably represent the surface expression of the same event. Successions of the Late Merougil Group are dominated by coarse felsic conglomerate with abundant volcanic quartz. Although the detrital zircons in these successions have a broad spread of age, the principal sub-populations have ages of about 2665 Ma and thus match closely those of the Early Merougil Group. These successions occur most commonly at the northwestern and southeastern margins of the granite batholiths and thus are interpreted to represent resedimented units dominted by the stratigraphically underlying packages of the Early Merougil Group. The Kurrawang Group is the youngest sedimentary units identified in this study and is dominated by polymictic conglomerate with clasts of banded iron formation (BIF), granite and quartzite near the base and quartz-rich sandstone units containing detrital zircons aged up to 3500 Ma near the top. These units record provenance from deeper and/or more-distal sources. We suggest here that the principal driver for the major episodes of volcanism, sedimentation and deformation associated with basin development was the progressive emplacement of large granite batholiths. This interpretation has important implication for palaeogeographic and palaeotectonic evolution of all late-Archean terranes around the world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As Himalayan glaciers melt, the natural dams formed beneath them become a dangerous threat to villages below. However, local yak farmers could soon have a simple solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research is related to the Finnish Jabal Harun Project (FJHP), which is part of the research unit directed by Professor Jaakko Frösén. The project consists of two interrelated parts: the excavation of a Byzantine monastery/pilgrimage centre on Jabal Harun, and a multiperiod archaeological survey of the surrounding landscape. It is generally held that the Near Eastern landscape has been modified by millennia of human habitation and activity. Past climatic changes and human activities could be expected to have significantly changed also the landscape of the Jabal Harun area. Therefore it was considered that a study of erosion in the Jabal Harun area could shed light on the environmental and human history of the area. It was hoped that it would be possible to connect the results of the sedimentological studies either to wider climatic changes in the Near East, or to archaeologically observable periods of human activity and land use. As evidence of some archaeological periods is completely missing from the Jabal Harun area, it was also of interest whether catastrophic erosion or unfavourable environmental change, caused either by natural forces or by human agency, could explain the gaps in the archaeological record. Changes in climate and/or land-use were expected to be reflected in the sedimentary record. The field research, carried out as part of the FJHP survey fieldwork, included the mapping of wadi terraces and cleaning of sediment profiles which were recorded and sampled for laboratory analyses of facies and lithology. To obtain a chronology for the sedimentation and erosion phases also OSL (optically stimulated luminescence) dating samples were collected. The results were compared to the record of the Near Eastern palaeoclimate, and to data from geoarchaeological studies in central and southern Jordan. The picture of the environmental development was then compared to the human history in the area, based on archaeological evidence from the FJHP survey and the published archaeological research in the Petra region, and the question of the relationship between human activity and environmental change was critically discussed. Using the palaeoclimatic data and the results from geoarchaeological studies it was possible to outline the environmental development in the Jabal Harun area from the Pleistocene to the present.It is appears that there was a phase of accumulation of sediment before the Middle Palaeolithic period, possibly related to tectonic movement. This phase was later followed by erosion, tentatively suggested to have taken place during the Upper Palaeolithic. A period of wadi aggradation probably occurred during the Late Glacial and continued until the end of the Pleistocene, followed by significant channel degradation, attributed to increased rainfall during the Early Holocene. It seems that during the later Holocene channel incision has been dominant in the Jabal Harûn area although there have been also small-scale channel aggradation phases, two of which were OSL-dated to around 4000-3000 BP and 2400-2000 BP. As there is no evidence of tectonic movements in the Jabal Harun area after the early Pleistocene, it is suggested that climate change and human activity have been the major causes of environmental change in the area. At a brief glance it seems that many of the changes in the settlement and land use in the Jabal Harun area can be explained by climatic and environmental conditions. However, the responses of human societies to environmental change are dependent on many factors. Therefore an evaluation of the significance of environmental, cultural, socio-economic and political factors is needed to decide whether certain phenomena are environmentally induced. Comparison with the wider Petra region is also needed to judge whether the phenomena are characteristic of the Jabal Harun area only, or can they be connected to social, political and economic development over a wider area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Sedimentation and Evaporation Pond System (SEPS) is a low-capital effluent management system based primarily on shallow pond sedimentation of effluent solids and annual evaporation of the liquid to retrieve dried solids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here the role of remote sensing (RS) and geographical information system (GIS) in the identification of geomorphic records and understanding of the local controls on the retreat of glaciers of the Baspa Valley, Himachal Pradesh, India. The geomorphic records mapped are accumulation zone, exposed ablation zone, moraine-covered ablation zone, snout, deglaciated valley, lateral moraine, medial moraine, terminal moraine and hanging glacier. Details of these features and stages of deglaciation have been extracted from RS data and mapped in a GIS environment. Glacial geomorphic data have been generated for 22 glaciers of the Baspa Valley. The retreat of glaciers has been estimated using the glacial maxima observed on satellite images. On the basis of percentage of retreat and the critical analysis of glacial geomorphic data for 22 glaciers of the Baspa Valley, they are classified into seven categories of very low to very very high retreat. From the analysis of the above 22 glaciers, it has been found that other than global warming, the retreat of glaciers of the Baspa Valley is inversely proportional to the size of the accumulation zone and the ratio of the moraine covered ablation/exposed ablation zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated area changes in glaciers covering an area of similar to 200 km(2) in the Tista basin, Sikkim, Eastern Indian Himalaya, between similar to 1990 and 2010 using Landsat Thematic Mapper (TM) and Indian Remote-sensing Satellite (IRS) images and related the changes to debris cover, supraglacial lakes and moraine-dam lakes. The glaciers lost an area of 3.3 +/- 0.8% between 1989/90 and 2010. More detailed analysis revealed an area loss of 2.00 +/- 0.82, 2.56 +/- 0.61 and 2.28 +/- 2.01 km(2) for the periods 1989-97, 1997-2004/05 and 2004-2009/10, respectively. This indicates an accelerated retreat of glaciers after 1997. On further analysis, we observed (1) the formation and expansion of supraglacial lakes on many debris-covered glaciers and (2) the merging of these lakes over time, leading to the development of large moraine-dam lakes. We also observed that debris-covered glaciers with lakes lose a greater area than debris-covered glaciers without lakes and debris-free glaciers. The climatic data for 24 years (1987-2011), measured at the Gangtok meteorological station (1812 m a.s.l.), showed that the region experienced a 1.0 degrees C rise in the summer minimum temperature and a 2.0 degrees C rise in the winter minimum temperature, indicating hotter summers and warmer winters. There was no significant trend in the total annual precipitation. We find that glacier retreat is caused mainly by a temperature increase and that debris-covered glaciers can retreat at a faster rate than debris-free glaciers, if associated with lakes.