991 resultados para Gislotica-Mechanical Solutions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern production and innovation processes in industrial corporations differ by complex nature of modern technologies and organizational solutions. Adequate methodological approaches to their analysis and evaluation of efficiency are required. The present study contains the conceptand the model of operational and innovation program for which formulated theoretical and methodological principles and systematic statement of the general problem of planning, designed to optimize the process of resource usage under different criteria, including: investment, financial, technological, industrial and information capabilities of the corporation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solutions of fructose, maltodextrin (DE 5), and their mixtures at the ratios of 20:80, 40:60, 50:50, 60:40, and 80:20 were gelled with 1% agar-agar and dried under convective-conductive drying conditions. The thin slabs were maintained at isothermal drying condition of 30 and 50 degrees C. Yamamoto's simplified method based on regular regime approach was used to calculate the (effective) moisture diffusivity. Both the drying rates and the moisture diffusivity exhibited strong concentration dependence. The concentration dependence was stronger in the case of fructose and fructose rich solutions. Both the moisture diffusivity and drying rates of the mixture solutions were enhanced due to plasticization of fructose on maltodextrin, which is explained through free volume theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When two solutions differing in solute concentration are separated by a porous membrane, the osmotic pressure will generate a net volume flux of the suspending fluid across the membrane; this is termed osmotic flow. We consider the osmotic flow across a membrane with circular cylindrical pores when the solute and the pore walls are electrically charged, and the suspending fluid is an electrolytic solution containing small cations and anions. Under the condition in which the radius of the pores and that of the solute molecules greatly exceed those of the solvent as well as the ions, a fluid mechanical and electrostatic theory is introduced to describe the osmotic flow in the presence of electric charge. The interaction energy, including the electrostatic interaction between the solute and the pore wall, plays a key role in determining the osmotic flow. We examine the electrostatic effect on the osmotic flow and discuss the difference in the interaction energy determined from the nonlinear Poisson-Boltzmann equation and from its linearized equation (the Debye-Hückel equation).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spirulina platensis nanoparticles were prepared by mechanical agitation and were applied to removal Cr (VI) from aqueous solutions. Nanoparticles preparation was function of stirring rate and contact time. In the optimal conditions, Cr (VI) removal by nanoparticles as a function of pH and initial ion concentration was carried out. The optimal conditions for preparation were 10,000 rpm and 20 min, and the nanoparticles presented mean diameter of 215.6 nm and polydispersity index of 0.151. The best conditions for Cr (VI) removal were at pH 4 and ion concentration of 250 mg L 1, and the Cr (VI) removal percentage was 99.1%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite significant advances in building technologies with the use of conventional construction materials (as concrete and steel), which significantly have driven the construction industry, earth construction have demonstrated its importance and relevance, as well as it has matched in an efficient and eco-friendly manner the social housing concerns. The diversity of earth construction techniques allowed this material to adapt to different climatic, cultural and social contexts until the present time. However, in Angola, the construction with earth is still associated with population fringes of weak economic resources, for which, given the impossibility of being able to acquire modern construction materials (steel, cement, brick, among others), they resort to the use of available natural materials. Furthermore, the lack of scientific and technical knowledge justifies the negative appreciation of traditional building techniques, and the derogatory way how are considered the earth constructions in Angolan territory. Given the country's current development status, and taking into account the environmental requirements and the real socio-economic sustainability of Angola, it is considered that one of the viable and adequate options, could be the recovering and upgrading of the ancestral techniques of earth construction. The purpose of this research is to develop the technical and scientific knowledge in order to improve and optimize these construction solutions, responding to the real problems of housing quality as well as to the current social, economic and environmental sustainability requirements. In this paper, a description of the physical and mechanical characteristics of the adobes typically used in the construction of traditional houses in some localities of Huambo, province in Angola, is carried out. The methodology was based on mechanical in-situ testing in adobe blocks manufactured with traditional procedures: i) tensile strength evaluated with the bending test and compressive strength test on earth blocks specimens; and, ii) durability and erodibility test by Geelong method adopting the New Zealand standard (NZS) procedures (4297: 1998; 4297: 1998 and 4297: 1999). The results allow the characterization of the materials used in the construction of raw earth in the Huambo region, contributing to the development of knowledge of these sustainable and traditional housing constructive solutions with a strong presence in Angola [1, 2]. This study is part of a larger project in the area of Earth Construction [3], which aims to produce knowledge which can stimulate the use of environmental friendly construction materials and contribute to develop constructive solutions with improved performance, durability, comfort, safety and sustainability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: In the present study, we consider mechanical properties of phosphate glasses under high temperatureinduced and under friction-induced cross-linking, which enhance the modulus of elasticity. Design/methodology/approach: Two nanomechanical properties are evaluated, the first parameter is the modulus of elasticity (E) (or Young's modulus) and the second parameter is the hardness (H). Zinc meta-, pyro - and orthophosphates were recognized as amorphous-colloidal nanoparticles were synthesized under laboratory conditions and showed antiwear properties in engine oil. Findings: Young's modulus of the phosphate glasses formed under high temperature was in the 60-89 GPa range. For phosphate tribofilm formed under friction hardness and the Young's modulus were in the range of 2-10 GPa and 40-215 GPa, respectively. The degree of cross-linking during friction is provided by internal pressure of about 600 MPa and temperature close to 1000°C enhancing mechanical properties by factor of 3 (see Fig 1). Research limitations/implications: The addition of iron or aluminum ions to phosphate glasses under high temperature - and friction-induced amorphization of zinc metaphosphate and pyrophosphate tends to provide more cross-linking and mechanically stronger structures. Iron and aluminum (FeO4 or AlO4 units), incorporated into phosphate structure as network formers, contribute to the anion network bonding by converting the P=O bonds into bridging oxygen. Future work should consider on development of new of materials prepared by solgel processes, eg., zinc (II)-silicic acid. Originality/value: This paper analyses the friction pressure-induced and temperature–induced the two factors lead phosphate tribofilm glasses to chemically advanced glass structures, which may enhance the wear inhibition. Adding the coordinating ions alters the pressure at which cross-linking occurs and increases the antiwear properties of the surface material significantly.