948 resultados para Ginzburg-Landau-Langevin equations
Resumo:
By incorporating self-consistent field theory with lattice Boltzmann method, a model for polymer melts is proposed. Compared with models based on Ginzburg-Landau free energy, our model does not employ phenomenological free energies to describe systems and can consider the chain topological details of polymers. We use this model to study the effects of hydrodynamic interactions on the dynamics of microphase separation for block copolymers. In the early stage of phase separation, an exponential growth predicted by Cahn-Hilliard treatment is found. Simulation results also show that the effect of hydrodynamic interactions can be neglected in the early stage.
Resumo:
In order to understand the coarsening of microdomains in symmetric diblock copolymers at the late stage, a model for block copolymers is proposed. By incorporating the self consistent field theory with the free energy approach Lattice Boltzmann model, hydrodynamic interactions can be considered. Compared with models based on Ginzburg-Landau free energy, this model does not employ phenomenological free energies to describe systems. The model is verified by comparing the simulation results obtained using this method with those of a dynamical version of the self consistent mean field theory. After that,the growth exponents of the characteristic domain size for symmetric block copolymers at late stage are studied. It is found that the viscosity of the system affects the growth exponents greatly, although the growth exponents are all less than 1/3 Furthermore, the relations between the growth exponent, the interaction parameter and the chain length are studied.
Resumo:
The dynamic mean-field density functional method, driven from the generalized time-dependent Ginzburg-Landau equation, was applied to the mesoscopic dynamics of the multi-arms star block copolymer melts in two-dimensional lattice model. The implicit Gaussian density functional expression of a multi-arms star block copolymer chain for the intrinsic chemical potentials was constructed for the first time. Extension of this calculation strategy to more complex systems, such as hyperbranched copolymer or dendrimer, should be straightforward. The original application of this method to 3-arms block copolymer melts in our present works led to some novel ordered microphase patterns, such as hexagonal (HEX) honeycomb lattice, core-shell HEX lattice, knitting pattern, etc. The observed core-shell HEX lattice ordered structure is qualitatively in agreement with the experiment of Thomas [Macromolecules 31, 5272 (1998)].
Resumo:
We study the response of dry granular materials to external stress using experiment, simulation, and theory. We derive a Ginzburg-Landau functional that enforces mechanical stability and positivity of contact forces. In this framework, the elastic moduli depend only on the applied stress. A combination of this feature and the positivity constraint leads to stress correlations whose shape and magnitude are extremely sensitive to the nature of the applied stress. The predictions from the theory describe the stress correlations for both simulations and experiments semiquantitatively. © 2009 The American Physical Society.
Resumo:
The macroscopic properties of the superconducting phase in the multiphase compound YPd5B3 C.3 have been investigated. The onset of superconductivity was observed at 22.6 K, zero resistance at 21.2 K, the lower critical field Hel at 5 K was determined to be Hel (5) rv 310 Gauss and the compound was found to be an extreme type-II superconductor with the upper critical field in excess of 55000 Gauss at 15 K. From the upper and lower critical field values obtained, several important parameters of the superconducting state were determined at T = 15 K. The Ginzburg-Landau paramater was determined to be ~ > 9 corresponding to a coherence length ~ rv 80A and magnetic penetration depth of 800A. In addition measurements of the superconducting transition temperature Te(P) under purely hydrostatically applied pressure have been carried out. Te(P) of YPd5B3 C.3 decreases linearly with dTe/dP rv -8.814 X 10-5 J
Resumo:
Dans cette thèse, nous présentons une nouvelle méthode smoothed particle hydrodynamics (SPH) pour la résolution des équations de Navier-Stokes incompressibles, même en présence des forces singulières. Les termes de sources singulières sont traités d'une manière similaire à celle que l'on retrouve dans la méthode Immersed Boundary (IB) de Peskin (2002) ou de la méthode régularisée de Stokeslets (Cortez, 2001). Dans notre schéma numérique, nous mettons en oeuvre une méthode de projection sans pression de second ordre inspirée de Kim et Moin (1985). Ce schéma évite complètement les difficultés qui peuvent être rencontrées avec la prescription des conditions aux frontières de Neumann sur la pression. Nous présentons deux variantes de cette approche: l'une, Lagrangienne, qui est communément utilisée et l'autre, Eulerienne, car nous considérons simplement que les particules SPH sont des points de quadrature où les propriétés du fluide sont calculées, donc, ces points peuvent être laissés fixes dans le temps. Notre méthode SPH est d'abord testée à la résolution du problème de Poiseuille bidimensionnel entre deux plaques infinies et nous effectuons une analyse détaillée de l'erreur des calculs. Pour ce problème, les résultats sont similaires autant lorsque les particules SPH sont libres de se déplacer que lorsqu'elles sont fixes. Nous traitons, par ailleurs, du problème de la dynamique d'une membrane immergée dans un fluide visqueux et incompressible avec notre méthode SPH. La membrane est représentée par une spline cubique le long de laquelle la tension présente dans la membrane est calculée et transmise au fluide environnant. Les équations de Navier-Stokes, avec une force singulière issue de la membrane sont ensuite résolues pour déterminer la vitesse du fluide dans lequel est immergée la membrane. La vitesse du fluide, ainsi obtenue, est interpolée sur l'interface, afin de déterminer son déplacement. Nous discutons des avantages à maintenir les particules SPH fixes au lieu de les laisser libres de se déplacer. Nous appliquons ensuite notre méthode SPH à la simulation des écoulements confinés des solutions de polymères non dilués avec une interaction hydrodynamique et des forces d'exclusion de volume. Le point de départ de l'algorithme est le système couplé des équations de Langevin pour les polymères et le solvant (CLEPS) (voir par exemple Oono et Freed (1981) et Öttinger et Rabin (1989)) décrivant, dans le cas présent, les dynamiques microscopiques d'une solution de polymère en écoulement avec une représentation bille-ressort des macromolécules. Des tests numériques de certains écoulements dans des canaux bidimensionnels révèlent que l'utilisation de la méthode de projection d'ordre deux couplée à des points de quadrature SPH fixes conduit à un ordre de convergence de la vitesse qui est de deux et à une convergence d'ordre sensiblement égale à deux pour la pression, pourvu que la solution soit suffisamment lisse. Dans le cas des calculs à grandes échelles pour les altères et pour les chaînes de bille-ressort, un choix approprié du nombre de particules SPH en fonction du nombre des billes N permet, en l'absence des forces d'exclusion de volume, de montrer que le coût de notre algorithme est d'ordre O(N). Enfin, nous amorçons des calculs tridimensionnels avec notre modèle SPH. Dans cette optique, nous résolvons le problème de l'écoulement de Poiseuille tridimensionnel entre deux plaques parallèles infinies et le problème de l'écoulement de Poiseuille dans une conduite rectangulaire infiniment longue. De plus, nous simulons en dimension trois des écoulements confinés entre deux plaques infinies des solutions de polymères non diluées avec une interaction hydrodynamique et des forces d'exclusion de volume.
Resumo:
We present a novel approach to computing the orientation moments and rheological properties of a dilute suspension of spheroids in a simple shear flow at arbitrary Peclct number based on a generalised Langevin equation method. This method differs from the diffusion equation method which is commonly used to model similar systems in that the actual equations of motion for the orientations of the individual particles are used in the computations, instead of a solution of the diffusion equation of the system. It also differs from the method of 'Brownian dynamics simulations' in that the equations used for the simulations are deterministic differential equations even in the presence of noise, and not stochastic differential equations as in Brownian dynamics simulations. One advantage of the present approach over the Fokker-Planck equation formalism is that it employs a common strategy that can be applied across a wide range of shear and diffusion parameters. Also, since deterministic differential equations are easier to simulate than stochastic differential equations, the Langevin equation method presented in this work is more efficient and less computationally intensive than Brownian dynamics simulations.We derive the Langevin equations governing the orientations of the particles in the suspension and evolve a procedure for obtaining the equation of motion for any orientation moment. A computational technique is described for simulating the orientation moments dynamically from a set of time-averaged Langevin equations, which can be used to obtain the moments when the governing equations are harder to solve analytically. The results obtained using this method are in good agreement with those available in the literature.The above computational method is also used to investigate the effect of rotational Brownian motion on the rheology of the suspension under the action of an external force field. The force field is assumed to be either constant or periodic. In the case of con- I stant external fields earlier results in the literature are reproduced, while for the case of periodic forcing certain parametric regimes corresponding to weak Brownian diffusion are identified where the rheological parameters evolve chaotically and settle onto a low dimensional attractor. The response of the system to variations in the magnitude and orientation of the force field and strength of diffusion is also analyzed through numerical experiments. It is also demonstrated that the aperiodic behaviour exhibited by the system could not have been picked up by the diffusion equation approach as presently used in the literature.The main contributions of this work include the preparation of the basic framework for applying the Langevin method to standard flow problems, quantification of rotary Brownian effects by using the new method, the paired-moment scheme for computing the moments and its use in solving an otherwise intractable problem especially in the limit of small Brownian motion where the problem becomes singular, and a demonstration of how systems governed by a Fokker-Planck equation can be explored for possible chaotic behaviour.
Resumo:
Using a Ginzburg-Landau model for the magnetic degrees of freedom with coupling to disorder, we demonstrate through simulations the existence of stripelike magnetic precursors recently observed in Co-Ni-Al alloys above the Curie temperature. We characterize these magnetic modulations by means of the temperature dependence of local magnetization distribution, magnetized volume fraction, and magnetic susceptibility. We also obtain a temperature-disorder strength phase diagram in which a magnetic tweed phase exists in a small region between the paramagnetic and dipolar phases.
Resumo:
The thesis deals with the study of super conducting properties of layered cuprates within the frame work of a modified Lawrence-Doniach (LD) model. The thesis is organized in seven chapters. Chapter I is a survey of the phenomena and theories of conventional superconductivity which can serve as a springboard for launching the study of the new class of oxide superconductors and it also includes a chronological description of the efforts made to overcome the temperature barrier. Chapter II deals with the structure and properties of the copper oxide superconductors and also the experimental constraints on the theories of high te:::nperature superconductivity. A modified Lawrence-Doniach type of phenomenological model which forms the basis of the presnt study is also discussed. In chapter III~ the temperature dependence of the upper critical field both parallel and perpendicular to the layers is determined and the results are compared with d.c. magnetization measurements on different superconducting compoilllds. The temperature and angular dependence of the lower critical field both parallel and perpendicular to the layers is also discussed. Chapters IV, V and VI deal with thermal fluctuation effects on superconducting properties. Fluctuation specific heat is studied in chapter IV. Paraconductivity both parallel and perpendicular to the layers is discussed in chapter V. Fluctuation diamagnetism is dealt with in chapter VI. Dimensional cross over in the fluctuation regime of all these quantities is also discussed. Chapter VII gives a summary of the results and the conclusions arrived at.
Resumo:
To test the effectiveness of stochastic single-chain models in describing the dynamics of entangled polymers, we systematically compare one such model; the slip-spring model; to a multichain model solved using stochastic molecular dynamics(MD) simulations (the Kremer-Grest model). The comparison involves investigating if the single-chain model can adequately describe both a microscopic dynamical and a macroscopic rheological quantity for a range of chain lengths. Choosing a particular chain length in the slip-spring model, the parameter values that best reproduce the mean-square displacement of a group of monomers is determined by fitting toMDdata. Using the same set of parameters we then test if the predictions of the mean-square displacements for other chain lengths agree with the MD calculations. We followed this by a comparison of the time dependent stress relaxation moduli obtained from the two models for a range of chain lengths. After identifying a limitation of the original slip-spring model in describing the static structure of the polymer chain as seen in MD, we remedy this by introducing a pairwise repulsive potential between the monomers in the chains. Poor agreement of the mean-square monomer displacements at short times can be rectified by the use of generalized Langevin equations for the dynamics and resulted in significantly improved agreement.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We consider the Euclidean D-dimensional -lambda vertical bar phi vertical bar(4)+eta vertical bar rho vertical bar(6) (lambda,eta > 0) model with d (d <= D) compactified dimensions. Introducing temperature by means of the Ginzburg-Landau prescription in the mass term of the Hamiltonian, this model can be interpreted as describing a first-order phase transition for a system in a region of the D-dimensional space, limited by d pairs of parallel planes, orthogonal to the coordinates axis x(1), x(2),..., x(d). The planes in each pair are separated by distances L-1, L-2, ... , L-d. We obtain an expression for the transition temperature as a function of the size of the system, T-c({L-i}), i = 1, 2, ..., d. For D = 3 we particularize this formula, taking L-1 = L-2 = ... = L-d = L for the physically interesting cases d = 1 (a film), d = 2 (an infinitely long wire having a square cross-section), and for d = 3 (a cube). For completeness, the corresponding formulas for second-order transitions are also presented. Comparison with experimental data for superconducting films and wires shows qualitative agreement with our theoretical expressions.
Resumo:
Nonlinear effects on the early stage of phase ordering are studied using Adomian's decomposition method for the Ginzburg-Landau equation for a nonconserved order parameter. While the long-time regime and the linear behavior at short times of the theory are well understood, the onset of nonlinearities at short times and the breaking of the linear theory at different length scales are less understood. In the Adomians decomposition method, the solution is systematically calculated in the form of a polynomial expansion for the order parameter, with a time dependence given as a series expansion. The method is very accurate for short times, which allows to incorporate the short-time dynamics of the nonlinear terms in a analytical and controllable way. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We consider the dynamics of a system of interacting spins described by the Ginzburg-Landau Hamiltonian. The method used is Zwanzig's version of the projection-operator method, in contrast to previous derivations in which we used Mori's version of this method. It is proved that both methods produce the same answer for the Green's function. We also make contact between the projection-operator method and critical dynamics.