977 resultados para Geometric Sum


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ancient temple dedicated to the Roman Emperor Augustus on the hilltop of Tarraco (today’s Tarragona), was the main element of the sacred precinct of the Imperial cult. It was a two hectare square, bordered by a portico with an attic decorated with a sequence of clypeus (i.e. monumental shields) made with marble plates from the Luni-Carrara’s quarries. This contribution presents the results of the analysis of a three-dimensional photogrammetric survey of one of these clipeus, partially restored and exhibited at the National Archaeological Museum of Tarragona. The perimeter ring was bounded by a sequence of meanders inscribed in a polygon of 11 sides, a hendecagon. Moreover, a closer geometric analysis suggests that the relationship between the outer meander rim and the oval pearl ring that delimited the divinity of Jupiter Ammon can be accurately determined by the diagonals of an octagon inscribed in the perimeter of the clypeus. This double evidence suggests a combined layout, in the same design, of an octagon and a hendecagon. Hypothetically, this could be achieved by combining the octagon with the approximation to Pi used in antiquity: 22/7 of the circle’s diameter. This method allows the drawing of a hendecagon with a clearly higher precision than with other ancient methods. Even the modelling of the motifs that separate the different decorative stripes corroborates the geometric scheme that we propose.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A continuous random variable is expanded as a sum of a sequence of uncorrelated random variables. These variables are principal dimensions in continuous scaling on a distance function, as an extension of classic scaling on a distance matrix. For a particular distance, these dimensions are principal components. Then some properties are studied and an inequality is obtained. Diagonal expansions are considered from the same continuous scaling point of view, by means of the chi-square distance. The geometric dimension of a bivariate distribution is defined and illustrated with copulas. It is shown that the dimension can have the power of continuum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this thesis is to show that plate strips subjected to transverse line loads can be analysed by using the beam on elastic foundation (BEF) approach. It is shown that the elastic behaviour of both the centre line section of a semi infinite plate supported along two edges, and the free edge of a cantilever plate strip can be accurately predicted by calculations based on the two parameter BEF theory. The transverse bending stiffness of the plate strip forms the foundation. The foundation modulus is shown, mathematically and physically, to be the zero order term of the fourth order differential equation governing the behaviour of BEF, whereas the torsion rigidity of the plate acts like pre tension in the second order term. Direct equivalence is obtained for harmonic line loading by comparing the differential equations of Levy's method (a simply supported plate) with the BEF method. By equating the second and zero order terms of the semi infinite BEF model for each harmonic component, two parameters are obtained for a simply supported plate of width B: the characteristic length, 1/ λ, and the normalized sum, n, being the effect of axial loading and stiffening resulting from the torsion stiffness, nlin. This procedure gives the following result for the first mode when a uniaxial stress field was assumed (ν = 0): 1/λ = √2B/π and nlin = 1. For constant line loading, which is the superimposition of harmonic components, slightly differing foundation parameters are obtained when the maximum deflection and bending moment values of the theoretical plate, with v = 0, and BEF analysis solutions are equated: 1 /λ= 1.47B/π and nlin. = 0.59 for a simply supported plate; and 1/λ = 0.99B/π and nlin = 0.25 for a fixed plate. The BEF parameters of the plate strip with a free edge are determined based solely on finite element analysis (FEA) results: 1/λ = 1.29B/π and nlin. = 0.65, where B is the double width of the cantilever plate strip. The stress biaxial, v > 0, is shown not to affect the values of the BEF parameters significantly the result of the geometric nonlinearity caused by in plane, axial and biaxial loading is studied theoretically by comparing the differential equations of Levy's method with the BEF approach. The BEF model is generalised to take into account the elastic rotation stiffness of the longitudinal edges. Finally, formulae are presented that take into account the effect of Poisson's ratio, and geometric non linearity, on bending behaviour resulting from axial and transverse inplane loading. It is also shown that the BEF parameters of the semi infinite model are valid for linear elastic analysis of a plate strip of finite length. The BEF model was verified by applying it to the analysis of bending stresses caused by misalignments in a laboratory test panel. In summary, it can be concluded that the advantages of the BEF theory are that it is a simple tool, and that it is accurate enough for specific stress analysis of semi infinite and finite plate bending problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral isoparametric elements. The main features of the present formulation are: (a) the element matrices are obtained using reduced integrations with hourglass control; (b) an explicit Taylor-Galerkin scheme is used to carry out the dynamic analysis, solving the corresponding equations of motion in terms of velocity components; (c) the Truesdell stress rate tensor is used; (d) the vector processor facilities existing in modern supercomputers were used. The results obtained are comparable with previous solutions in terms of accuracy and computational performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is divided into two different parts. The first one provides a brief introduction to the fractal geometry with some simple illustrations in fluid mechanics. We thought it would be helpful to introduce the reader into this relatively new approach to mechanics that has not been sufficiently explored by engineers yet. Although in fluid mechanics, mainly in problems of percolation and binary flows, the use of fractals has gained some attention, the same is not true for solid mechanics, from the best of our knowledge. The second part deals with the mechanical behavior of thin wires subjected to very large deformations. It is shown that starting to a plausible conjecture it is possible to find global constitutive equations correlating geometrical end energy variables with the fractal dimension of the solid subjected to large deformations. It is pointed out the need to complement the present proposal with experimental work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this thesis is to investigate some open problems in the area of combinatorial number theory referred to as zero-sum theory. A zero-sequence in a finite cyclic group G is said to have the basic property if it is equivalent under group automorphism to one which has sum precisely IGI when this sum is viewed as an integer. This thesis investigates two major problems, the first of which is referred to as the basic pair problem. This problem seeks to determine conditions for which every zero-sequence of a given length in a finite abelian group has the basic property. We resolve an open problem regarding basic pairs in cyclic groups by demonstrating that every sequence of length four in Zp has the basic property, and we conjecture on the complete solution of this problem. The second problem is a 1988 conjecture of Kleitman and Lemke, part of which claims that every sequence of length n in Zn has a subsequence with the basic property. If one considers the special case where n is an odd integer we believe this conjecture to hold true. We verify this is the case for all prime integers less than 40, and all odd integers less than 26. In addition, we resolve the Kleitman-Lemke conjecture for general n in the negative. That is, we demonstrate a sequence in any finite abelian group isomorphic to Z2p (for p ~ 11 a prime) containing no subsequence with the basic property. These results, as well as the results found along the way, contribute to many other problems in zero-sum theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Receipt (copy) for the amount received from Burton and Bro. for the sum of $944.00 paid in full for stumpage on berths 192 and 198. It is signed by S.D. Woodruff, May 24, 1878.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Réalisé en cotutelle avec l'Université Bordeaux 1 (France)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cette thèse porte sur les phénomènes critiques survenant dans les modèles bidimensionnels sur réseau. Les résultats sont l'objet de deux articles : le premier porte sur la mesure d'exposants critiques décrivant des objets géométriques du réseau et, le second, sur la construction d'idempotents projetant sur des modules indécomposables de l'algèbre de Temperley-Lieb pour la chaîne de spins XXZ. Le premier article présente des expériences numériques Monte Carlo effectuées pour une famille de modèles de boucles en phase diluée. Baptisés "dilute loop models (DLM)", ceux-ci sont inspirés du modèle O(n) introduit par Nienhuis (1990). La famille est étiquetée par les entiers relativement premiers p et p' ainsi que par un paramètre d'anisotropie. Dans la limite thermodynamique, il est pressenti que le modèle DLM(p,p') soit décrit par une théorie logarithmique des champs conformes de charge centrale c(\kappa)=13-6(\kappa+1/\kappa), où \kappa=p/p' est lié à la fugacité du gaz de boucles \beta=-2\cos\pi/\kappa, pour toute valeur du paramètre d'anisotropie. Les mesures portent sur les exposants critiques représentant la loi d'échelle des objets géométriques suivants : l'interface, le périmètre externe et les liens rouges. L'algorithme Metropolis-Hastings employé, pour lequel nous avons introduit de nombreuses améliorations spécifiques aux modèles dilués, est détaillé. Un traitement statistique rigoureux des données permet des extrapolations coïncidant avec les prédictions théoriques à trois ou quatre chiffres significatifs, malgré des courbes d'extrapolation aux pentes abruptes. Le deuxième article porte sur la décomposition de l'espace de Hilbert \otimes^nC^2 sur lequel la chaîne XXZ de n spins 1/2 agit. La version étudiée ici (Pasquier et Saleur (1990)) est décrite par un hamiltonien H_{XXZ}(q) dépendant d'un paramètre q\in C^\times et s'exprimant comme une somme d'éléments de l'algèbre de Temperley-Lieb TL_n(q). Comme pour les modèles dilués, le spectre de la limite continue de H_{XXZ}(q) semble relié aux théories des champs conformes, le paramètre q déterminant la charge centrale. Les idempotents primitifs de End_{TL_n}\otimes^nC^2 sont obtenus, pour tout q, en termes d'éléments de l'algèbre quantique U_qsl_2 (ou d'une extension) par la dualité de Schur-Weyl quantique. Ces idempotents permettent de construire explicitement les TL_n-modules indécomposables de \otimes^nC^2. Ceux-ci sont tous irréductibles, sauf si q est une racine de l'unité. Cette exception est traitée séparément du cas où q est générique. Les problèmes résolus par ces articles nécessitent une grande variété de résultats et d'outils. Pour cette raison, la thèse comporte plusieurs chapitres préparatoires. Sa structure est la suivante. Le premier chapitre introduit certains concepts communs aux deux articles, notamment une description des phénomènes critiques et de la théorie des champs conformes. Le deuxième chapitre aborde brièvement la question des champs logarithmiques, l'évolution de Schramm-Loewner ainsi que l'algorithme de Metropolis-Hastings. Ces sujets sont nécessaires à la lecture de l'article "Geometric Exponents of Dilute Loop Models" au chapitre 3. Le quatrième chapitre présente les outils algébriques utilisés dans le deuxième article, "The idempotents of the TL_n-module \otimes^nC^2 in terms of elements of U_qsl_2", constituant le chapitre 5. La thèse conclut par un résumé des résultats importants et la proposition d'avenues de recherche qui en découlent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryptosystem using linear codes was developed in 1978 by Mc-Eliece. Later in 1985 Niederreiter and others developed a modified version of cryptosystem using concepts of linear codes. But these systems were not used frequently because of its larger key size. In this study we were designing a cryptosystem using the concepts of algebraic geometric codes with smaller key size. Error detection and correction can be done efficiently by simple decoding methods using the cryptosystem developed. Approach: Algebraic geometric codes are codes, generated using curves. The cryptosystem use basic concepts of elliptic curves cryptography and generator matrix. Decrypted information takes the form of a repetition code. Due to this complexity of decoding procedure is reduced. Error detection and correction can be carried out efficiently by solving a simple system of linear equations, there by imposing the concepts of security along with error detection and correction. Results: Implementation of the algorithm is done on MATLAB and comparative analysis is also done on various parameters of the system. Attacks are common to all cryptosystems. But by securely choosing curve, field and representation of elements in field, we can overcome the attacks and a stable system can be generated. Conclusion: The algorithm defined here protects the information from an intruder and also from the error in communication channel by efficient error correction methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis entitled Geometric algebra and einsteins electron: Deterministic field theories .The work in this thesis clarifies an important part of Koga’s theory.Koga also developed a theory of the electron incorporating its gravitational field, using his substitutes for Einstein’s equation.The third chapter deals with the application of geometric algebra to Koga’s approach of the Dirac equation. In chapter 4 we study some aspects of the work of mendel sachs (35,36,37,).Sachs stated aim is to show how quantum mechanics is a limiting case of a general relativistic unified field theory.Chapter 5 contains a critical study and comparison of the work of Koga and Sachs. In particular, we conclude that the incorporation of Mach’s principle is not necessary in Sachs’s treatment of the Dirac equation.