994 resultados para Geometric Semantic Genetic Programming
Resumo:
This paper presents the development of a two-dimensional interactive software environment for structural analysis and optimization based on object-oriented programming using the C++ language. The main feature of the software is the effective integration of several computational tools into graphical user interfaces implemented in the Windows-98 and Windows-NT operating systems. The interfaces simplify data specification in the simulation and optimization of two-dimensional linear elastic problems. NURBS have been used in the software modules to represent geometric and graphical data. Extensions to the analysis of three-dimensional problems have been implemented and are also discussed in this paper.
Resumo:
Human activity recognition in everyday environments is a critical, but challenging task in Ambient Intelligence applications to achieve proper Ambient Assisted Living, and key challenges still remain to be dealt with to realize robust methods. One of the major limitations of the Ambient Intelligence systems today is the lack of semantic models of those activities on the environment, so that the system can recognize the speci c activity being performed by the user(s) and act accordingly. In this context, this thesis addresses the general problem of knowledge representation in Smart Spaces. The main objective is to develop knowledge-based models, equipped with semantics to learn, infer and monitor human behaviours in Smart Spaces. Moreover, it is easy to recognize that some aspects of this problem have a high degree of uncertainty, and therefore, the developed models must be equipped with mechanisms to manage this type of information. A fuzzy ontology and a semantic hybrid system are presented to allow modelling and recognition of a set of complex real-life scenarios where vagueness and uncertainty are inherent to the human nature of the users that perform it. The handling of uncertain, incomplete and vague data (i.e., missing sensor readings and activity execution variations, since human behaviour is non-deterministic) is approached for the rst time through a fuzzy ontology validated on real-time settings within a hybrid data-driven and knowledgebased architecture. The semantics of activities, sub-activities and real-time object interaction are taken into consideration. The proposed framework consists of two main modules: the low-level sub-activity recognizer and the high-level activity recognizer. The rst module detects sub-activities (i.e., actions or basic activities) that take input data directly from a depth sensor (Kinect). The main contribution of this thesis tackles the second component of the hybrid system, which lays on top of the previous one, in a superior level of abstraction, and acquires the input data from the rst module's output, and executes ontological inference to provide users, activities and their in uence in the environment, with semantics. This component is thus knowledge-based, and a fuzzy ontology was designed to model the high-level activities. Since activity recognition requires context-awareness and the ability to discriminate among activities in di erent environments, the semantic framework allows for modelling common-sense knowledge in the form of a rule-based system that supports expressions close to natural language in the form of fuzzy linguistic labels. The framework advantages have been evaluated with a challenging and new public dataset, CAD-120, achieving an accuracy of 90.1% and 91.1% respectively for low and high-level activities. This entails an improvement over both, entirely data-driven approaches, and merely ontology-based approaches. As an added value, for the system to be su ciently simple and exible to be managed by non-expert users, and thus, facilitate the transfer of research to industry, a development framework composed by a programming toolbox, a hybrid crisp and fuzzy architecture, and graphical models to represent and con gure human behaviour in Smart Spaces, were developed in order to provide the framework with more usability in the nal application. As a result, human behaviour recognition can help assisting people with special needs such as in healthcare, independent elderly living, in remote rehabilitation monitoring, industrial process guideline control, and many other cases. This thesis shows use cases in these areas.
Resumo:
Genetic, Prenatal and Postnatal Determinants of Weight Gain and Obesity in Young Children – The STEPS Study University of Turku, Faculty of Medicine, Department of Paediatrics, University of Turku Doctoral Program of Clinical Investigation (CLIPD), Turku Institute for Child and Youth Research. Conditions of being overweight and obese in childhood are common health problems with longlasting effects into adulthood. Currently 22% of Finnish boys and 12% of Finnish girls are overweight and 4% of Finnish boys and 2% of Finnish girls are obese. The foundation for later health is formed early, even before birth, and the importance of prenatal growth on later health outcomes is widely acknowledged. When the mother is overweight, had high gestational weight gain and disturbances in glucose metabolism during pregnancy, an increased risk of obesity in children is present. On the other hand, breastfeeding and later introduction of complementary foods are associated with a decreased obesity risk. In addition to these, many genetic and environmental factors have an effect on obesity risk, but the clustering of these factors is not extensively studied. The main objective of this thesis was to provide comprehensive information on prenatal and early postnatal factors associated with weight gain and obesity in infancy up to two years of age. The study was part of the STEPS Study (Steps to Healthy Development), which is a follow-up study consisting of 1797 families. This thesis focused on children up to 24 months of age. Altogether 26% of boys and 17% of girls were overweight and 5% of boys and 4% of girls were obese at 24 months of age according to New Finnish Growth references for Children BMI-for-age criteria. Compared to children who remained normal weight, the children who became overweight or obese showed different growth trajectories already at 13 months of age. The mother being overweight had an impact on children’s birth weight and early growth from birth to 24 months of age. The mean duration of breastfeeding was almost 2 months shorter in overweight women in comparison to normal weight women. A longer duration of breastfeeding was protective against excessive weight gain, high BMI, high body weight and high weight-for-length SDS during the first 24 months of life. Breast milk fatty acid composition differed between overweight and normal weight mothers, and overweight women had more saturated fatty acids and less n-3 fatty acids in breast milk. Overweight women also introduced complementary foods to their infants earlier than normal weight mothers. Genetic risk score calculated from 83 obesogenic- and adiposity-related single nucleotide polymorphisms (SNPs) showed that infants with a high genetic risk for being overweight and obese were heavier at 13 months and 24 months of age than infants with a low genetic risk, thus possibly predisposing to later obesity in obesogenic environment. Obesity Risk Score showed that children with highest number of risk factors had almost 6-fold risk of being overweight and obese at 24 months compared to children with lowest number of risk factors. The accuracy of the Obesity Risk Score in predicting overweight and obesity at 24 months was 82%. This study showed that many of the obesogenic risk factors tend to cluster within children and families and that children who later became overweight or obese show different growth trajectories already at a young age. These results highlight the importance of early detection of children with higher obesity risk as well as the importance of prevention measures focused on parents. Keywords: Breastfeeding, Child, Complementary Feeding, Genes, Glucose metabolism, Growth, Infant Nutrition Physiology, Nutrition, Obesity, Overweight, Programming
Resumo:
Hub Location Problems play vital economic roles in transportation and telecommunication networks where goods or people must be efficiently transferred from an origin to a destination point whilst direct origin-destination links are impractical. This work investigates the single allocation hub location problem, and proposes a genetic algorithm (GA) approach for it. The effectiveness of using a single-objective criterion measure for the problem is first explored. Next, a multi-objective GA employing various fitness evaluation strategies such as Pareto ranking, sum of ranks, and weighted sum strategies is presented. The effectiveness of the multi-objective GA is shown by comparison with an Integer Programming strategy, the only other multi-objective approach found in the literature for this problem. Lastly, two new crossover operators are proposed and an empirical study is done using small to large problem instances of the Civil Aeronautics Board (CAB) and Australian Post (AP) data sets.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
In this paper, we introduce a novel high-level visual content descriptor which is devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt to bridge the so called “semantic gap”. The proposed image feature vector model is fundamentally underpinned by the image labelling framework, called Collaterally Confirmed Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts of the images with the state-of-the-art low-level image processing and visual feature extraction techniques for automatically assigning linguistic keywords to image regions. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicates that our proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models.
Resumo:
The storage and processing capacity realised by computing has lead to an explosion of data retention. We now reach the point of information overload and must begin to use computers to process more complex information. In particular, the proposition of the Semantic Web has given structure to this problem, but has yet realised practically. The largest of its problems is that of ontology construction; without a suitable automatic method most will have to be encoded by hand. In this paper we discus the current methods for semi and fully automatic construction and their current shortcomings. In particular we pay attention the application of ontologies to products and the particle application of the ontologies.
Resumo:
Modern methods of spawning new technological motifs are not appropriate when it is desired to realize artificial life as an actual real world entity unto itself (Pattee 1995; Brooks 2006; Chalmers 1995). Many fundamental aspects of such a machine are absent in common methods, which generally lack methodologies of construction. In this paper we mix classical and modern studies in order to attempt to realize an artificial life form from first principles. A model of an algorithm is introduced, its methodology of construction is presented, and the fundamental source from which it sprang is discussed.
Resumo:
Currently many ontologies are available for addressing different domains. However, it is not always possible to deploy such ontologies to support collaborative working, so that their full potential can be exploited to implement intelligent cooperative applications capable of reasoning over a network of context-specific ontologies. The main problem arises from the fact that presently ontologies are created in an isolated way to address specific needs. However we foresee the need for a network of ontologies which will support the next generation of intelligent applications/devices, and, the vision of Ambient Intelligence. The main objective of this paper is to motivate the design of a networked ontology (Meta) model which formalises ways of connecting available ontologies so that they are easy to search, to characterise and to maintain. The aim is to make explicit the virtual and implicit network of ontologies serving the Semantic Web.
Resumo:
Increasingly, distributed systems are being used to host all manner of applications. While these platforms provide a relatively cheap and effective means of executing applications, so far there has been little work in developing tools and utilities that can help application developers understand problems with the supporting software, or the executing applications. To fully understand why an application executing on a distributed system is not behaving as would be expected it is important that not only the application, but also the underlying middleware, and the operating system are analysed too, otherwise issues could be missed and certainly overall performance profiling and fault diagnoses would be harder to understand. We believe that one approach to profiling and the analysis of distributed systems and the associated applications is via the plethora of log files generated at runtime. In this paper we report on a system (Slogger), that utilises various emerging Semantic Web technologies to gather the heterogeneous log files generated by the various layers in a distributed system and unify them in common data store. Once unified, the log data can be queried and visualised in order to highlight potential problems or issues that may be occurring in the supporting software or the application itself.
Resumo:
Genetic algorithm has been widely used in different areas of optimization problems. Ithas been combined with renewable energy domain, photovoltaic system, in this thesis.To participate and win the solar boat race, a control program is needed and C++ hasbeen chosen for programming. To implement the program, the mathematic model hasbeen built. Besides, the approaches to calculate the boundaries related to conditionhave been explained. Afterward, the processing of the prediction and real time controlfunction are offered. The program has been simulated and the results proved thatgenetic algorithm is helpful to get the good results but it does not improve the resultstoo much since the particularity of the solar driven boat project such as the limitationof energy production
Resumo:
Service discovery in large scale, open distributed systems is difficult because of the need to filter out services suitable to the task at hand from a potentially huge pool of possibilities. Semantic descriptions have been advocated as the key to expressive service discovery, but the most commonly used service descriptions and registry protocols do not support such descriptions in a general manner. In this paper, we present a protocol, its implementation and an API for registering semantic service descriptions and other task/user-specific metadata, and for discovering services according to these. Our approach is based on a mechanism for attaching structured and unstructured metadata, which we show to be applicable to multiple registry technologies. The result is an extremely flexible service registry that can be the basis of a sophisticated semantically-enhanced service discovery engine, an essential component of a Semantic Grid.