960 resultados para Geographic range


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de doutoramento, Biologia (Ecologia), Universidade de Lisboa, Faculdade de Ciências, 2016

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fish species around the world are parasitized by myxozoans of the genus Kudoa, several of which infect and cause damage of commercial importance. In particular, Kudoa thyrsites and Kudoa amamiensis infect certain cultured fish species causing damage to muscle tissue, making the fish unmarketable. Kudoa thyrsites has a broad host and geographic range infecting over 35 different fish species worldwide, while K. amamiensis has only been reported from a few species in Japanese waters. Through morphological and molecular analyses we have confirmed the presence of both of these parasites in eastern Australian waters. In addition, a novel Kudoa species was identified, having stellate spores, with one polar capsule larger than the other three. The SSU rDNA sequence of this parasite was 1.5% different from K. thyrsites and is an outlier from K. thyrsites representatives in a phylogenetic analysis. Furthermore, the spores of this parasite are distinctly smaller than those of K. thyrsites, and thus it is described as Kudoa minithyrsites n. sp. Although the potential effects of K. minithyrsites n. sp. on its fish hosts are unknown, both K. thyrsites and K. amamiensis are associated with flesh quality problems in some cultured species and may be potential threats to an expanding aquaculture industry in Australia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The genetic divergence and evolution of new species within the geographic range of a single population (sympatric speciation) contrasts with the well-established doctrine that speciation occurs when populations become geographically isolated (allopatric speciation). Although there is considerable theoretical support for sympatric speciation [1, 2], this mode of diversification remains controversial, at least in part because there are few well-supported examples [3]. We use a combination of molecular, ecological, and biogeographical data to build a case for sympatric speciation by host shift in a new species of coral-dwelling fish (genus Gobiodon). We propose that competition for preferred coral habitats drives host shifts in Gobiodon and that the high diversity of corals provides the source of novel, unoccupied habitats. Disruptive selection in conjunction with strong host fidelity could promote rapid reproductive isolation and ultimately lead to species divergence. Our hypothesis is analogous to sympatric speciation by host shift in phytophagous insects [4, 5] except that we propose a primary role for intraspecific competition in the process of speciation. The fundamental similarity between these fishes and insects is a specialized and intimate relationship with their hosts that makes them ideal candidates for speciation by host shift.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inferring the spatial expansion dynamics of invading species from molecular data is notoriously difficult due to the complexity of the processes involved. For these demographic scenarios, genetic data obtained from highly variable markers may be profitably combined with specific sampling schemes and information from other sources using a Bayesian approach. The geographic range of the introduced toad Bufo marinus is still expanding in eastern and northern Australia, in each case from isolates established around 1960. A large amount of demographic and historical information is available on both expansion areas. In each area, samples were collected along a transect representing populations of different ages and genotyped at 10 microsatellite loci. Five demographic models of expansion, differing in the dispersal pattern for migrants and founders and in the number of founders, were considered. Because the demographic history is complex, we used an approximate Bayesian method, based on a rejection-regression algorithm. to formally test the relative likelihoods of the five models of expansion and to infer demographic parameters. A stepwise migration-foundation model with founder events was statistically better supported than other four models in both expansion areas. Posterior distributions supported different dynamics of expansion in the studied areas. Populations in the eastern expansion area have a lower stable effective population size and have been founded by a smaller number of individuals than those in the northern expansion area. Once demographically stabilized, populations exchange a substantial number of effective migrants per generation in both expansion areas, and such exchanges are larger in northern than in eastern Australia. The effective number of migrants appears to be considerably lower than that of founders in both expansion areas. We found our inferences to be relatively robust to various assumptions on marker. demographic, and historical features. The method presented here is the only robust, model-based method available so far, which allows inferring complex population dynamics over a short time scale. It also provides the basis for investigating the interplay between population dynamics, drift, and selection in invasive species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The somatic growth dynamics of green turtles ( Chelonia mydas) resident in five separate foraging grounds within the Hawaiian Archipelago were assessed using a robust non-parametric regression modelling approach. The foraging grounds range from coral reef habitats at the north-western end of the archipelago, to coastal habitats around the main islands at the southeastern end of the archipelago. Pelagic juveniles recruit to these neritic foraging grounds from ca. 35 cm SCL or 5 kg ( similar to 6 years of age), but grow at foraging-ground-specific rates, which results in quite different size- and age-specific growth rate functions. Growth rates were estimated for the five populations as change in straight carapace length ( cm SCL year) 1) and, for two of the populations, also as change in body mass ( kg year) 1). Expected growth rates varied from ca. 0 - 2.5 cm SCL year) 1, depending on the foraging-ground population, which is indicative of slow growth and decades to sexual maturity, since expected size of first-time nesters is greater than or equal to 80 cm SCL. The expected size- specific growth rate functions for four populations sampled in the southeastern archipelago displayed a non-monotonic function, with an immature growth spurt at ca. 50 - 53 cm SCL ( similar to 18 - 23 kg) or ca. 13 - 19 years of age. The growth spurt for the Midway atoll population in the northwestern archipelago occurs at a much larger size ( ca. 65 cm SCL or 36 kg), because of slower immature growth rates that might be due to a limited food stock and cooler sea surface temperature. Expected age-at-maturity was estimated to be ca. 35 - 40 years for the four populations sampled at the south-eastern end of the archipelago, but it might well be > 50 years for the Midway population. The Hawaiian stock comprises mainly the same mtDNA haplotype, with no differences in mtDNA stock composition between foraging-ground populations, so that the geographic variability in somatic growth rates within the archipelago is more likely due to local environmental factors rather than genetic factors. Significant temporal variability was also evident, with expected growth rates declining over the last 10 - 20 years, while green turtle abundance within the archipelago has increased significantly since the mid-1970s. This inverse relationship between somatic growth rates and population abundance suggests a density-dependent effect on somatic growth dynamics that has also been reported recently for a Caribbean green turtle stock. The Hawaiian green turtle stock is characterised by slow growth rates displaying significant spatial and temporal variation and an immature growth spurt. This is consistent with similar findings for a Great Barrier Reef green turtle stock that also comprises many foraging-ground populations spanning a wide geographic range.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aeolid nudibranch Pteraeolidia ianthina hosts symbiotic dinoflagellates in the same way as many reef-building corals. This widespread Indo-Pacific sea slug ranges from tropical to temperate waters, and offers a unique opportunity to examine a symbiosis that occurs over a large latitudinal gradient. We used partial 28S and 18S nuclear ribosomal (nr) DNA to examine the genetic diversity of the Symbiodinium dinoflagellates contained within F ianthina. We detected Symbiodinium from genetic clades A, B, C and D. P. ianthina from tropical regions (Singapore, Sulawesi) host Symbiodinium clade C or D or both; those from the subtropical eastern Australian coast (Heron Island, Mon Repo, Moreton Bay, Tweed Heads) host Symbiodinium clade C, but those from the temperate southeastern Australian coastline (Port Stephens, Bare Island) host clade A or B or both. The Symbiodinium populations within 1 individual nudibranch could be homogeneous or heterogeneous at inter- or intra-clade levels (or both). Our results suggested that the Pteraeolidia-Symbiodinium symbiosis is flexible and favours symbiont phylotypes best adapted for that environment. This flexibility probably reflects the function of the symbiont clade in relation to the changing environments experienced along the latitudinal range, and facilitates the large geographic range of P. ianthina.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Data on the occurrence of species are widely used to inform the design of reserve networks. These data contain commission errors (when a species is mistakenly thought to be present) and omission errors (when a species is mistakenly thought to be absent), and the rates of the two types of error are inversely related. Point locality data can minimize commission errors, but those obtained from museum collections are generally sparse, suffer from substantial spatial bias and contain large omission errors. Geographic ranges generate large commission errors because they assume homogenous species distributions. Predicted distribution data make explicit inferences on species occurrence and their commission and omission errors depend on model structure, on the omission of variables that determine species distribution and on data resolution. Omission errors lead to identifying networks of areas for conservation action that are smaller than required and centred on known species occurrences, thus affecting the comprehensiveness, representativeness and efficiency of selected areas. Commission errors lead to selecting areas not relevant to conservation, thus affecting the representativeness and adequacy of reserve networks. Conservation plans should include an estimation of commission and omission errors in underlying species data and explicitly use this information to influence conservation planning outcomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ten correlates of successful colonization were tested and met in the life history of the Cuban treefrog in Florida and the Caribbean. Like many successful colonizing species of animals, the Cuban treefrog was highly fecund; reproduction was possible at a small body size in males (27.0 mm) and females (45.0 mm), and large females could lay large clutches and eggs throughout the year. Generation times were short in this species thereby accelerating the colonization process. Tadpoles and post-metamorphic individuals could exploit a wide range of physical conditions with respect to weather conditions and structure of the habitat. The Cuban treefrog occupied the terrestrial-arboreal niche which was only marginally exploited by other species in Florida. Habitat preference of the Cuban treefrog was for mesophytic forests and disturbed areas, and both habitats were found in native and introduced ranges. The ability to coexist with man further enabled the Cuban treefrog to expand its geographic range. A broad diet enabled the Cuban treefrog to exploit a wide range of prey species and sizes thereby alleviating an important constraint to colonization success. The Cuban treefrog was gregarious and vagile, thereby accelerating the process of dispersal which is crucial to the colonization process. Thus, many features in its life history enabled the Cuban treefrog to rapidly disperse and colonize, often in high population densities, many kinds of sites in its native and introduced range. Conformity to these correlates by the Cuban treefrog ultimately provides predictive power regarding the future colonization of this tropical frog. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemical defenses are common among organisms and represent some of the most complex adaptations for avoiding predation, yet our understanding of the ecological nature of these systems remains incomplete. Poison frogs are a group of chemically defended organisms that are dependent entirely on diet for chemical defense. In this study, I identified the dietary arthropods responsible for chemical defense in poison frogs, described spatial and temporal patterns in alkaloid composition of poison frogs, and established links between patterns of variation in alkaloid defense and arthropod diet in poison frogs. Identifying dietary sources and studying patterns of variation in alkaloid composition is fundamental to understanding the ecology and evolution of chemical defense in poison frogs. ^ The dendrobatid poison frog Oophaga pumilio shares many alkaloids in common with other poison frogs and is known to vary in alkaloid composition throughout its geographic range. I designed my dissertation to take advantage of these characteristics and use O. pumilio as a model species for the study of chemical defense in poison frogs. Here, I identified siphonotid millipedes as a source for spiropyrrolizidine alkaloids, formicine ants as a source for pumiliotoxin alkaloids, and oribatid mites as dietary sources for the majority of alkaloids found in poison frogs. I found that alkaloid composition varied spatially and temporally, on both small and large scales, within and among populations of O. pumilio. Alkaloid variation between populations was related to geographic distance, and closer populations tended to have alkaloid compositions more similar to each other than to distant populations. ^ The findings of my study suggest that oribatid mites are the most important dietary source of alkaloids in poison frogs. However, overall alkaloid defense in poison frogs is based on a combination of dietary arthropods, including mites, ants, millipedes, and beetles. Variation in chemical defenses of poison frogs is due to (1) spatial and temporal differences in the presence of alkaloids in certain arthropods and (2) differences in the availability of certain alkaloid-containing arthropods, which are likely the result of differences as well as successional changes in forest structure among locations and through time. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evolution of reproductive strategies involves a complex calculus of costs and benefits to both parents and offspring. Many marine animals produce embryos packaged in tough egg capsules or gelatinous egg masses attached to benthic surfaces. While these egg structures can protect against environmental stresses, the packaging is energetically costly for parents to produce. In this series of studies, I examined a variety of ecological factors affecting the evolution of benthic development as a life history strategy. I used marine gastropods as my model system because they are incredibly diverse and abundant worldwide, and they exhibit a variety of reproductive and developmental strategies.

The first study examines predation on benthic egg masses. I investigated: 1) behavioral mechanisms of predation when embryos are targeted (rather than the whole egg mass); 2) the specific role of gelatinous matrix in predation. I hypothesized that gelatinous matrix does not facilitate predation. One study system was the sea slug Olea hansineensis, an obligate egg mass predator, feeding on the sea slug Haminoea vesicula. Olea fed intensely and efficiently on individual Haminoea embryos inside egg masses but showed no response to live embryos removed from gel, suggesting that gelatinous matrix enables predation. This may be due to mechanical support of the feeding predator by the matrix. However, Haminoea egg masses outnumber Olea by two orders of magnitude in the field, and each egg mass can contain many tens of thousands of embryos, so predation pressure on individuals is likely not strong. The second system involved the snail Nassarius vibex, a non-obligate egg mass predator, feeding on the polychaete worm Clymenella mucosa. Gel neither inhibits nor promotes embryo predation for Nassarius, but because it cannot target individual embryos inside an egg mass, its feeding is slow and inefficient, and feeding rates in the field are quite low. However, snails that compete with Nassarius for scavenged food have not been seen to eat egg masses in the field, leaving Nassarius free to exploit the resource. Overall, egg mass predation in these two systems likely benefits the predators much more than it negatively affects the prey. Thus, selection for environmentally protective aspects of egg mass production may be much stronger than selection for defense against predation.

In the second study, I examined desiccation resistance in intertidal egg masses made by Haminoea vesicula, which preferentially attaches its flat, ribbon-shaped egg masses to submerged substrata. Egg masses occasionally detach and become stranded on exposed sand at low tide. Unlike adults, the encased embryos cannot avoid desiccation by selectively moving about the habitat, and the egg mass shape has high surface-area-to-volume ratio that should make it prone to drying out. Thus, I hypothesized that the embryos would not survive stranding. I tested this by deploying individual egg masses of two age classes on exposed sand bars for the duration of low tide. After rehydration, embryos midway through development showed higher rates of survival than newly-laid embryos, though for both stages survival rates over 25% were frequently observed. Laboratory desiccation trials showed that >75% survival is possible in an egg mass that has lost 65% of its water weight, and some survival (<25%) was observed even after 83% water weight lost. Although many surviving embryos in both experiments showed damage, these data demonstrate that egg mass stranding is not necessarily fatal to embryos. They may be able to survive a far greater range of conditions than they normally encounter, compensating for their lack of ability to move. Also, desiccation tolerance of embryos may reduce pressure on parents to find optimal laying substrata.

The third study takes a big-picture approach to investigating the evolution of different developmental strategies in cone snails, the largest genus of marine invertebrates. Cone snail species hatch out of their capsules as either swimming larvae or non-dispersing forms, and their developmental mode has direct consequences for biogeographic patterns. Variability in life history strategies among taxa may be influenced by biological, environmental, or phylogenetic factors, or a combination of these. While most prior research has examined these factors singularly, my aim was to investigate the effects of a host of intrinsic, extrinsic, and historical factors on two fundamental aspects of life history: egg size and egg number. I used phylogenetic generalized least-squares regression models to examine relationships between these two egg traits and a variety of hypothesized intrinsic and extrinsic variables. Adult shell morphology and spatial variability in productivity and salinity across a species geographic range had the strongest effects on egg diameter and number of eggs per capsule. Phylogeny had no significant influence. Developmental mode in Conus appears to be influenced mostly by species-level adaptations and niche specificity rather than phylogenetic conservatism. Patterns of egg size and egg number appear to reflect energetic tradeoffs with body size and specific morphologies as well as adaptations to variable environments. Overall, this series of studies highlights the importance of organism-scale biotic and abiotic interactions in evolutionary patterns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The advent of next-generation sequencing has significantly reduced the cost of obtaining large-scale genetic resources, opening the door for genomic studies of non-model but ecologically interesting species. The shift in mating system, from outcrossing to selfing, has occurred thousands of times in angiosperms and is accompanied by profound changes in the population genetics and ecology of a species. A large body of work has been devoted to understanding why the shift occurs and the impact of the shift on the genetics of the resulting selfing populations, however, the causes and consequences of the transition to selfing involve a complicated interaction of genetic and demographic factors which are difficult to untangle. Abronia umbellata is a Pacific coastal dune endemic which displays a striking shift in mating system across its geographic range, with large-flowered outcrossing populations south of San Francisco and small-flowered selfing populations to the north. Abronia umbellata is an attractive model system for the study of mating system transitions because the shift appears to be recent and therefore less obscured by post-shift processes, it has a near one-dimensional geographic range which simplifies analysis and interpretation, and demographic data has been collected for many of the populations. In this study, we generated transcriptome-level data for 12 plants including individuals from both subspecies, along with a resequencing study of 48 individuals from populations across the range. The genetic analysis revealed a recent transition to selfing involving a drastic reduction in genetic diversity in the selfing lineage, potentially indicative of a recent population bottleneck and a transition to selfing due to reproductive assurance. Interestingly, the genetic structure of the populations was not coincident with the current subspecies demarcation, and two large-flowered populations were classified with the selfing subspecies, suggesting a potential need for re-evaluation of the current subspecies classification. Our finding of low diversity in selfing populations may also have implications for the conservation value of the threatened selfing subspecies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Puccinia psidii (Myrtle rust) is an emerging pathogen that has a wide host range in the Myrtaceae family; it continues to show an increase in geographic range and is considered to be a significant threat to Myrtaceae plants worldwide. In this study, we describe the development and validation of three novel real-time polymerase reaction (qPCR) assays using ribosomal DNA and β-tubulin gene sequences to detect P. psidii. All qPCR assays were able to detect P. psidii DNA extracted from urediniospores and from infected plants, including asymptomatic leaf tissues. Depending on the gene target, qPCR was able to detect down to 0.011 pg of P. psidii DNA. The most optimum qPCR assay was shown to be highly specific, repeatable, and reproducible following testing using different qPCR reagents and real-time PCR platforms in different laboratories. In addition, a duplex qPCR assay was developed to allow coamplification of the cytochrome oxidase gene from host plants for use as an internal PCR control. The most optimum qPCR assay proved to be faster and more sensitive than the previously published nested PCR assay and will be particularly useful for high-throughput testing and to detect P. psidii at the early stages of infection, before the development of sporulating rust pustules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Jaw remains with teeth from Plio-Pleistocene sediments of the Anatolian upland (Turkey) are the first records of Hyaena perrieri and Euryboas lunensis outside Europe. Both species are members of a fauna of the lowermost Villafranchian. The stratigraphic and geographic range of Hyaena perrieri and H. brevirostris as well as the origin of the genus Euryboas are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The California sea otter population is gradually expanding in size and geographic range and is consequently invading new feeding grounds, including bays and estuaries that are home to extensive populations of bivalve prey. One such area is the Elkhorn Slough, where otters have apparently established a spring and summer communal feeding and resting area. In anticipation of future otter foraging in the slough, an extensive baseline database on bivalve densities, size distributions, biomasses, and burrow depths has been established for three potential bivalve prey species, Saxidomus nuttalli, Tresus nutallii, and Zirphaea pilsbryi. In 1986, the Elkhorn Slough otters were foraging predominately at two areas immediately east and west of the Highway 1 bridge (Skipper's and the PG&E Outfall). Extensive subtidal populations of Saxidomus nuttalli and Tresus nuttallii occur in these areas. Shell records collected at these study areas indicated that sea otters were foraging selectively on Saxidomus over Tresus. The reason for this apparent preference was not clear. At the Skipper's study site, 51% of the shell record was composed of Saxidomus, yet this species accounted for only 16% of the in situ biomass, and only 39% of the available clams. Tresus represented 49% of the shell record at Skipper's, yet this species accounted for 84% of the in situ biomass and 61% of the available clams. There was no difference in mean burrow depth between the two species at this site so availability does not explain the disparity in consumption. At the PG&E Outfall, Saxidomus represents 66% of the in situ biomass and 81% of the available clams, while Tresus accounts for 34% of the in situ biomass and 19% of the available clams. Saxidomus accounts for 96% of the shell record at this site vs. 4% for Tresus, again indicating that the otters were preying on Saxidomus out of proportion to their density or biomass. High densities and biomasses of a third species, Zirphaea pilsbryi, occur in areas where sea otters were observed to be foraging, yet no cast-off Zirphaea shells were found. Although it is possible this species was not represented in the shell record because the otters were simply chewing up the shells, it is more likely this species is avoided by sea otters. There were relatively few sea otters in the Elkhorn Slough in 1986 compared to the previous two years. This, coupled with high bivalve densities, precluded any quantitative comparison of bivalve densities before and after the 1986 sea otter occupation. Qualitative observations made during the course of this study, and quantitative observations from previous studies indicate that, after 3 years, sea otters are not yet significantly affecting bivalve densities in the Elkhorn Slough.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An increasing focus in evolutionary biology is on the interplay between mesoscale ecological and evolutionary processes such as population demographics, habitat tolerance, and especially geographic distribution, as potential drivers responsible for patterns of diversification and extinction over geologic time. However, few studies to date connect organismal processes such as survival and reproduction through mesoscale patterns to long-term macroevolutionary trends. In my dissertation, I investigate how mechanism of seed dispersal, mediated through geographic range size, influences diversification rates in the Rosales (Plantae: Anthophyta). In my first chapter, I validate the phylogenetic comparative methods that I use in my second and third chapters. Available state speciation and extinction (SSE) models assumptions about evolution known to be false through fossil data. I show, however, that as long as net diversification rates remain positive – a condition likely true for the Rosales – these violations of SSE’s assumptions do not cause significantly biased results. With SSE methods validated, my second chapter reconstructs three associations that appear to increase diversification rate for Rosalean genera: (1) herbaceous habit; (2) a three-way interaction combining animal dispersal, high within-genus species richness, and geographic range on multiple continents; (3) a four-way interaction combining woody habit with the other three characteristics of (2). I suggest that the three- and four-way interactions represent colonization ability and resulting extinction resistance in the face of late Cenozoic climate change; however, there are other possibilities as well that I hope to investigate in future research. My third chapter reconstructs the phylogeographic history of the Rosales using both non-fossil-assisted SSE methods as well as fossil-informed traditional phylogeographic analysis. Ancestral state reconstructions indicate that the Rosaceae diversified in North America while the other Rosalean families diversified elsewhere, possibly in Eurasia. SSE is able to successfully identify groups of genera that were likely to have been ancestrally widespread, but has poorer taxonomic resolution than methods that use fossil data. In conclusion, these chapters together suggest several potential causal links between organismal, mesoscale, and geologic scale processes, but further work will be needed to test the hypotheses that I raise here.