933 resultados para Genetic effects


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite international protection of white sharks (Carcharodon carcharias), important conservation parameters such as abundance, population structure and genetic diversity are largely unknown. The tissue of 97 predominately juvenile white sharks sampled from spatially distant eastern and southwestern Australian coastlines was sequenced for the mitochondrial DNA (mtDNA) control region and genotyped with six nuclear-encoded microsatellite loci. MtDNA population structure was found between the eastern and southwestern coasts (FST = 0.142, p < 0.001), implying female natal philopatry. This concords with recent satellite and acoustic tracking findings which suggest the sustained presence of discrete east coast nursery areas. Furthermore, population subdivision was found between the same regions with biparentally inherited microsatellite markers (FST = 0.009, p <0.05), suggesting that males may also exhibit some degree of reproductive philopatry. Five sharks captured along the east coast had mtDNA haplotypes that resembled western Indian Ocean sharks more closely than Australian/New Zealand sharks, suggesting that transoceanic dispersal or migration resulting in breeding may occur sporadically. Our most robust estimate of contemporary genetic effective population size was low and below the threshold at which adaptive potential may be lost. For a variety of reasons, these contemporary estimates were at least one, possibly two orders of magnitude below our historical effective size estimates. Further population decline could expose these genetically isolated populations to detrimental genetic effects. Regional Australian white shark conservation management units should be implemented until genetic population structure, size and diversity can be investigated in more detail. Reference: Blower, D. C., Pandolfi, J. M., Gomez-Cabrera, M. del C., Bruce, B. D. & Ovenden, J. R. (In press - April 2012). Population genetics of Australian white sharks reveals fine-scale spatial structure, transoceanic dispersal events and low effective population sizes. Marine Ecology Progress Series.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The discovery of genetic factors that contribute to schizophrenia susceptibility is a key challenge in understanding the etiology of this disease. Here, we report the identification of a novel schizophrenia candidate gene on chromosome 1q32, plexin A2 (PLXNA2), in a genome-wide association study using 320 patients with schizophrenia of European descent and 325 matched controls. Over 25,000 single-nucleotide polymorphisms (SNPs) located within approximately 14,000 genes were tested. Out of 62 markers found to be associated with disease status, the most consistent finding was observed for a candidate locus on chromosome 1q32. The marker SNP rs752016 showed suggestive association with schizophrenia (odds ratio (OR) = 1.49, P = 0.006). This result was confirmed in an independent case-control sample of European Americans (combined OR = 1.38, P = 0.035) and similar genetic effects were observed in smaller subsets of Latin Americans (OR = 1.26) and Asian Americans (OR = 1.37). Supporting evidence was also obtained from two family-based collections, one of which reached statistical significance (OR = 2.2, P = 0.02). High-density SNP mapping showed that the region of association spans approximately 60 kb of the PLXNA2 gene. Eight out of 14 SNPs genotyped showed statistically significant differences between cases and controls. These results are in accordance with previous genetic findings that identified chromosome 1q32 as a candidate region for schizophrenia. PLXNA2 is a member of the transmembrane semaphorin receptor family that is involved in axonal guidance during development and may modulate neuronal plasticity and regeneration. The PLXNA2 ligand semaphorin 3A has been shown to be upregulated in the cerebellum of individuals with schizophrenia. These observations, together with the genetic results, make PLXNA2 a likely candidate for the 1q32 schizophrenia susceptibility locus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite international protection of white sharks Carcharodon carcharias, important conservation parameters such as abundance, population structure and genetic diversity are largely unknown. The tissue of 97 predominately juvenile white sharks sampled from spatially distant eastern and southwestern Australian coastlines was sequenced for the mitochondrial DNA (mtDNA) control region and genotyped with 6 nuclear-encoded microsatellite loci. MtDNA population structure was found between the eastern and southwestern coasts (F-ST = 0.142, p < 0.0001), implying female reproductive philopatry. This concurs with recent satellite and acoustic tracking findings which suggest the sustained presence of discrete east coast nursery areas. Furthermore, population subdivision was found between the same regions with biparentally inherited micro satellite markers (F-ST = 0.009, p < 0.05), suggesting that males may also exhibit some degree of reproductive philopatry; 5 sharks captured along the east coast had mtDNA haplotypes that resembled western Indian Ocean sharks more closely than Australian/New Zealand sharks, suggesting that transoceanic dispersal, or migration resulting in breeding, may occur sporadically. Our most robust estimate of contemporary genetic effective population size was low and close to thresholds at which adaptive potential may be lost. For a variety of reasons, these contemporary estimates were at least 1, possibly 2, orders of magnitude below our historical effective size estimates. Population decline could expose these genetically isolated populations to detrimental genetic effects. Regional Australian white shark conservation management units should be implemented until genetic population structure, size and diversity can be investigated in more detail.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The brain's functional network exhibits many features facilitating functional specialization, integration, and robustness to attack. Using graph theory to characterize brain networks, studies demonstrate their small-world, modular, and "rich-club" properties, with deviations reported in many common neuropathological conditions. Here we estimate the heritability of five widely used graph theoretical metrics (mean clustering coefficient (γ), modularity (Q), rich-club coefficient (ϕnorm), global efficiency (λ), small-worldness (σ)) over a range of connection densities (k=5-25%) in a large cohort of twins (N=592, 84 MZ and 89 DZ twin pairs, 246 single twins, age 23±2.5). We also considered the effects of global signal regression (GSR). We found that the graph metrics were moderately influenced by genetic factors h2 (γ=47-59%, Q=38-59%, ϕnorm=0-29%, λ=52-64%, σ=51-59%) at lower connection densities (≤15%), and when global signal regression was implemented, heritability estimates decreased substantially h2 (γ=0-26%, Q=0-28%, ϕnorm=0%, λ=23-30%, σ=0-27%). Distinct network features were phenotypically correlated (|r|=0.15-0.81), and γ, Q, and λ were found to be influenced by overlapping genetic factors. Our findings suggest that these metrics may be potential endophenotypes for psychiatric disease and suitable for genetic association studies, but that genetic effects must be interpreted with respect to methodological choices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anatomical brain networks change throughout life and with diseases. Genetic analysis of these networks may help identify processes giving rise to heritable brain disorders, but we do not yet know which network measures are promising for genetic analyses. Many factors affect the downstream results, such as the tractography algorithm used to define structural connectivity. We tested nine different tractography algorithms and four normalization methods to compute brain networks for 853 young healthy adults (twins and their siblings). We fitted genetic structural equation models to all nine network measures, after a normalization step to increase network consistency across tractography algorithms. Probabilistic tractography algorithms with global optimization (such as Probtrackx and Hough) yielded higher heritability statistics than 'greedy' algorithms (such as FACT) which process small neighborhoods at each step. Some global network measures (probtrackx-derived GLOB and ST) showed significant genetic effects, making them attractive targets for genome-wide association studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIMS An independent, powerful coronary heart disease (CHD) predictor is a low level of high-density lipoprotein cholesterol (HDL-C). Discoidal preβ-HDL particles and large HDL2 particles are the primary cholesterol acceptors in reverse cholesterol transport, a key anti-atherogenic HDL mechanism. The quality of HDL subspecies may provide better markers of HDL functionality than does HDL-C alone. We aimed I) to study whether alterations in the HDL subspecies profile exist in low-HDL-C subjects II) to explore the relationship of any changes in HDL subspecies profile in relation to atherosclerosis and metabolic syndrome; III) to elucidate the impact of genetics and acquired obesity on HDL subspecies distribution. SUBJECTS The study consisted of 3 cohorts: A) Finnish families with low HDL-C and premature CHD (Study I: 67 subjects with familial low HDL-C and 64 controls; Study II: 83 subjects with familial low HDL-C, 65 family members with normal HDL-C, and 133 controls); B) a cohort of 113 low- and 133 high-HDL-C subjects from the Health 2000 Health Examination Survey carried out in Finland (Study III); and C) a Finnish cohort of healthy young adult twins (52 monozygotic and 89 dizygotic pairs) (Study IV). RESULTS AND CONCLUSIONS The subjects with familial low HDL-C had a lower preβ-HDL concentration than did controls, and the low-HDL-C subjects displayed a dramatic reduction (50-70%) in the proportion of large HDL2b particles. The subjects with familial low HDL-C had increased carotid atherosclerosis measured as intima-media-thickness (IMT), and HDL2b particles correlated negatively with IMT. The reduction in both key cholesterol acceptors, preβ-HDL and HDL2 particles, supports the concept of impaired reverse cholesterol transport contributing to the higher CHD risk in low-HDL-C subjects. The family members with normal HDL-C and the young adult twins with acquired obesity showed a reduction in large HDL2 particles and an increase in small HDL3 particles, which may be the first changes leading to the lowering of HDL-C. The low-HDL-C subjects had a higher serum apolipoprotein E (apoE) concentration, which correlated positively with the metabolic syndrome components (waist circumference, TG, and glucose), highlighting the need for a better understanding of apoE metabolism in human atherosclerosis. In the twin study, the increase in small HDL3b particles was associated with obesity independent of genetic effects. The heritability estimate, of 73% for HDL-C and 46 to 63% for HDL subspecies, however, demonstrated a strong genetic influence. These results suggest that the relationship between obesity and lipoproteins depends on different elements in each subject. Finally, instead of merely elevating HDL-C, large HDL2 particles and discoidal preβ-HDL particles may provide beneficial targets for HDL-targeted therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An alternative models framework was used to test three confirmatory factor analytic models for the Short Leyton Obsessional Inventory-Children's Version (Short LOI-CV) in a general population sample of 517 young adolescent twins (11-16 years). A one-factor model as implicit in current classification systems of Obsessive-Compulsive Disorder (OCD), a two-factor obsessions and compulsions model, and a multidimensional model corresponding to the three proposed subscales of the Short LOI-CV (labelled Obsessions/Incompleteness, Numbers/Luck and Cleanliness) were considered. The three-factor model was the only model to provide an adequate explanation of the data. Twin analyses suggested significant quantitative sex differences in heritability for both the Obsessions/Incompleteness and Numbers/Luck dimensions with these being significantly heritable in males only (heritability of 60% and 65% respectively). The correlation between the additive genetic effects for these two dimensions in males was 0.95 suggesting they largely share the same genetic risk factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A genome scan meta-analysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia (SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (P-SR) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142-168 Mb) and 2q (103-134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119-152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for 'aggregate' genome-wide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p (16-33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies. Molecular Psychiatry (2009) 14, 774-785; doi:10.1038/mp.2008.135; published online 30 December 2008

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reports of substantial evidence for genetic linkage of schizophrenia to chromosome 1q were evaluated by genotyping 16 DNA markers across 107 centimorgans of this chromosome in a multicenter sample of 779 informative schizophrenia pedigrees. No significant evidence was observed for such linkage, nor for heterogeneity in allele sharing among the eight individual samples. Separate analyses of European-origin families, recessive models of inheritance, and families with larger numbers of affected cases also failed to produce significant evidence for linkage. If schizophrenia susceptibility genes are present on chromosome 1q, their population-wide genetic effects are likely to be small.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Both polygenicity (many small genetic effects) and confounding biases, such as cryptic relatedness and population stratification, can yield an inflated distribution of test statistics in genome-wide association studies (GWAS). However, current methods cannot distinguish between inflation from a true polygenic signal and bias. We have developed an approach, LD Score regression, that quantifies the contribution of each by examining the relationship between test statistics and linkage disequilibrium (LD). The LD Score regression intercept can be used to estimate a more powerful and accurate correction factor than genomic control. We find strong evidence that polygenicity accounts for the majority of the inflation in test statistics in many GWAS of large sample size.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Evidence suggests that genetic factors may influence both schizophrenia (Scz) and its clinical presentation. In recent years, genome-wide association studies (GWAS) have demonstrated considerable success in identifying risk loci. Detection of "modifier loci" has the potential to further elucidate underlying disease processes.

METHODS: We performed GWAS of empirically derived positive and negative symptom scales in Irish cases from multiply affected pedigrees and a larger, independent case-control sample, subsequently combining these into a large Irish meta-analysis. In addition to single-SNP associations, we considered gene-based and pathway analyses to better capture convergent genetic effects, and to facilitate biological interpretation of these findings. Replication and testing of aggregate genetic effects was conducted using an independent European-American sample.

RESULTS: Though no single marker met the genome-wide significance threshold, genes and ontologies/pathways were significantly associated with negative and positive symptoms; notably, NKAIN2 and NRG1, respectively. We observed limited overlap in ontologies/pathways associated with different symptom profiles, with immune-related categories over-represented for negative symptoms, and addiction-related categories for positive symptoms. Replication analyses suggested that genes associated with clinical presentation are generalizable to non-Irish samples.

CONCLUSIONS: These findings strongly support the hypothesis that modifier loci contribute to the etiology of distinct Scz symptom profiles. The finding that previously implicated "risk loci" actually influence particular symptom dimensions has the potential to better delineate the roles of these genes in Scz etiology. Furthermore, the over-representation of distinct gene ontologies/pathways across symptom profiles suggests that the clinical heterogeneity of Scz is due in part to complex and diverse genetic factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE:

To estimate the heritability of peripheral refraction in Chinese children and adolescents.

METHODS:

The authors examined 72 monozygotic (MZ) twins and 48 dizygotic (DZ) twins aged 8 to 20 years from a population-based twin registry. Temporal and nasal peripheral refraction, each 40° from the visual axis, and axial refraction were measured using an autorefractor. Relative peripheral refractive error (RPRE) was defined as the peripheral refraction minus the axial refraction. Heritability was assessed by structural equation modeling after adjustment for age and sex.

RESULTS:

The mean and SD of temporal refraction (T(40)), nasal refraction (N(40)), RPRE-T(40), RPRE-N(40), and T(40)-N(40) asymmetry were -0.27 ± 2.0 D, 0.36 ± 2.19 D, 1.18 ± 1.39 D, 1.80 ± 1.69 D, and -0.62 ± 1.58 D, respectively. The intraclass correlations for T(40) refraction, N(40) refraction, RPRE-T(40), RPRE-N(40), and T(40)-N(40) asymmetry were 0.87, 0.83, 0.65, 0.74, and 0.58 for MZ pairs and 0.49, 0.42, 0.30, 0.41, and 0.32 for DZ pairs, respectively. A model with additive genetic and unique environmental effects was the most parsimonious, with heritability values estimated as 0.84, 0.76, 0.63, 0.70, and 0.55, respectively, for the peripheral refractive parameters.

CONCLUSIONS:

Additive genetic effects appear to explain most of the variance in peripheral refraction and relative peripheral refraction when adjusting for the effects of axial refraction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The article discusses improving welfare by reducing fear by studying: Animal Sensory Perception, Animal Behavior Patterns, Animal Habituation and Temperament, Effects of Previous Handling, Training Animals, Training Time and Temperament, Genetic Effects on Handling, Handling of escaped Animals, Facilities, Aggression in Grazing Animals, Inherent Danger of Large Animals, Cattle and Car Accidents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Depuis plusieurs années, les études ont bien démontré que les troubles du sommeil tendent à être héréditaires. Il existe de plus en plus d’évidence scientifique démontrant l’implication des facteurs génétiques dans la manifestation des terreurs nocturnes. Les études de jumeaux sont essentielles pour évaluer l’influence des facteurs génétiques et environnementaux dans les affections complexes comme les terreurs nocturnes. Cependant, la plupart des études antérieures de jumeaux sur les terreurs nocturnes sont, soient des études rétrospectives ou encore des études avec un échantillon insuffisant de patients, ce qui résulte en des résultats peu concluants. L’objectif de ce mémoire était de déterminer la contribution des facteurs génétiques et des facteurs environnementaux dans la manifestation des terreurs nocturnes d’une large cohorte de jeunes jumeaux suivis d’une façon prospective. Ce mémoire a montré que la proportion de la variance phénotypique totale des terreurs nocturnes due aux influences génétiques est plus que 40% pour les jumeaux âgés de 18 et de 30 mois. La corrélation polychorique, à l’âge de 18 mois, est de 0,63 chez les jumeaux monozygotes et de 0,36 chez les jumeaux dizygotes du même âge. À l’âge de 30 mois, cette corrélation est de 0,68 chez les monozygotes et de 0,24 chez les dizygotes. Ceci démontre que les facteurs génétiques jouent un rôle important dans la manifestation des terreurs nocturnes chez les enfants de très jeune âge. Basée sur l’héritabilité, cette étude suggère que la prédisposition génétique soit associée avec la persistance des symptômes des terreurs nocturnes jusqu’à l’âge de 30 mois.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evolutionary theory suggests that divergent natural selection in heterogeneous environments can result in locally adapted plant genotypes. To understand local adaptation it is important to study the ecological factors responsible for divergent selection. At a continental scale, variation in climate can be important while at a local scale soil properties could also play a role. We designed an experiment aimed to disentangle the role of climate and ( abiotic and biotic) soil properties in local adaptation of two common plant species. A grass (Holcus lanatus) and a legume ( Lotus corniculatus), as well as their local soils, were reciprocally transplanted between three sites across an Atlantic-Continental gradient in Europe and grown in common gardens in either their home soil or foreign soils. Growth and reproductive traits were measured over two growing seasons. In both species, we found significant environmental and genetic effects on most of the growth and reproductive traits and a significant interaction between the two environmental effects of soil and climate. The grass species showed significant home site advantage in most of the fitness components, which indicated adaptation to climate. We found no indication that the grass was adapted to local soil conditions. The legume showed a significant home soil advantage for number of fruits only and thus a weak indication of adaptation to soil and no adaptation to climate. Our results show that the importance of climate and soil factors as drivers of local adaptation is species-dependent. This could be related to differences in interactions between plant species and soil biota.