985 resultados para Gene synthesis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have shown that glucose increases the glucose transporter (GLUT2) mRNA expression in the liver in vivo and in vitro. Here we report an analysis of the effects of glucose metabolism on GLUT2 gene expression. GLUT2 mRNA accumulation by glucose was not due to stabilization of its transcript but rather was a direct effect on gene transcription. A proximal fragment of the 5' regulatory region of the mouse GLUT2 gene linked to a reporter gene was transiently transfected into liver GLUT2-expressing cells. Glucose stimulated reporter gene expression in these cells, suggesting that glucose-responsive elements were included within the proximal region of the promoter. A dose-dependent effect of glucose on GLUT2 expression was observed over 10 mM glucose irrespective of the hexokinase isozyme (glucokinase K(m) 16 mM; hexokinase I K(m) 0.01 mM) present in the cell type used. This suggests that the correlation between extracellular glucose and GLUT2 mRNA concentrations is simply a reflection of an activation of glucose metabolism. The mediators and the mechanism responsible for this response remain to be determined. In conclusion, glucose metabolism is required for the proper induction of the GLUT2 gene in the liver and this effect is transcriptionally regulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP) synthase (FPS), the prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both enzymes were expressed in E. coli, purified and biochemically characterized. Despite FPS1S and FPS2 share more than 90% amino acid sequence identity, FPS2 was found to be more efficient as a catalyst, more sensitive to the inhibitory effect of NaCl, and more resistant to thermal inactivation than FPS1S. Homology modelling for FPS1S and FPS2 and analysis of the amino acid differences between the two enzymes revealed an increase in surface polarity and a greater capacity to form surface salt bridges of FPS2 compared to FPS1S. These factors most likely account for the enhanced thermostability of FPS2. Expression analysis of FPS::GUS genes in seeds showed that FPS1 and FPS2 display complementary patterns of expression particularly at late stages of seed development, which suggests that Arabidopsis seeds have two spatially segregated sources of FPP. Functional complementation studies of the Arabidopsis fps2 knockout mutant seed phenotypes demonstrated that under normal conditions FPS1S and FPS2 are functionally interchangeable. A putative role for FPS2 in maintaining seed germination capacity under adverse environmental conditions is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background- Cardiac hypertrophy involves growth responses to a variety of stimuli triggered by increased workload. It is an independent risk factor for heart failure and sudden death. Mammalian target of rapamycin (mTOR) plays a key role in cellular growth responses by integrating growth factor and energy status signals. It is found in 2 structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC) 1 and mTORC2. The role of each of these branches of mTOR signaling in the adult heart is currently unknown. Methods and Results- We generated mice with deficient myocardial mTORC1 activity by targeted ablation of raptor, which encodes an essential component of mTORC1, during adulthood. At 3 weeks after the deletion, atrial and brain natriuretic peptides and β-myosin heavy chain were strongly induced, multiple genes involved in the regulation of energy metabolism were altered, but cardiac function was normal. Function deteriorated rapidly afterward, resulting in dilated cardiomyopathy and high mortality within 6 weeks. Aortic banding-induced pathological overload resulted in severe dilated cardiomyopathy already at 1 week without a prior phase of adaptive hypertrophy. The mechanism involved a lack of adaptive cardiomyocyte growth via blunted protein synthesis capacity, as supported by reduced phosphorylation of ribosomal S6 kinase 1 and 4E-binding protein 1. In addition, reduced mitochondrial content, a shift in metabolic substrate use, and increased apoptosis and autophagy were observed. Conclusions- Our results demonstrate an essential function for mTORC1 in the heart under physiological and pathological conditions and are relevant for the understanding of disease states in which the insulin/insulin-like growth factor signaling axis is affected such as diabetes mellitus and heart failure or after cancer therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PHO1 was previously identified in Arabidopsis (Arabidopsis thaliana) as a protein involved in loading inorganic phosphate (Pi) into the xylem of roots and its expression was associated with the vascular cylinder. Seven genes homologous to AtPHO1 (PpPHO1;1-PpPHO1;7) have been identified in the moss Physcomitrella patens. The corresponding proteins harbor an SPX tripartite domain in the N-terminal hydrophilic portion and an EXS domain in the conserved C-terminal hydrophobic portion, both common features of the plant PHO1 family. Northern-blot analysis showed distinct expression patterns for the PpPHO1 genes, both at the tissue level and in response to phosphate deficiency. Transgenic P. patens expressing the beta-glucuronidase reporter gene under three different PpPHO1 promoters revealed distinct expression profiles in various tissues. Expression of PpPHO1;1 and PpPHO1;7 was specifically induced by Pi starvation. P. patens homologs to the Arabidopsis PHT1, DGD2, SQD1, and APS1 genes also responded to Pi deficiency by increased mRNA levels. Morphological changes associated with Pi deficiency included elongation of caulonemata with inhibition of the formation of side branches, resulting in colonies with greater diameter, but reduced mass compared to Pi-sufficient plants. Under Pi-deficient conditions, P. patens also increased the synthesis of ribonucleases and of an acid phosphatase, and increased the ratio of sulfolipids over phospholipids. These results indicate that P. patens and higher plants share some common strategies to adapt to Pi deficiency, although morphological changes are distinct, and that the PHO1 proteins are well conserved in bryophyte despite the lack of a developed vascular system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quorum sensing, a cell-to-cell communication system based on small signal molecules, is employed by the human pathogen Pseudomonas aeruginosa to regulate virulence and biofilm development. Moreover, regulation by small trans-encoded RNAs has become a focal issue in studies of virulence gene expression of bacterial pathogens. In this study, we have identified the small RNA PhrS as an activator of PqsR synthesis, one of the key quorum-sensing regulators in P. aeruginosa. Genetic studies revealed a novel mode of regulation by a sRNA, whereby PhrS uses a base-pairing mechanism to activate a short upstream open reading frame to which the pqsR gene is translationally coupled. Expression of phrS requires the oxygen-responsive regulator ANR. Thus, PhrS is the first bacterial sRNA that provides a regulatory link between oxygen availability and quorum sensing, which may impact on oxygen-limited growth in P. aeruginosa biofilms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Jasmonates are lipid mediators that control defence gene expression in response to wounding and other environmental stresses. These small molecules can accumulate at distances up to several cm from sites of damage and this is likely to involve cell-to-cell jasmonate transport. Also, and independently of jasmonate synthesis, transport and perception, different long-distance wound signals that stimulate distal jasmonate synthesis are propagated at apparent speeds of several cmmin(-1) to tissues distal to wounds in a mechanism that involves clade 3 GLUTAMATE RECEPTOR-LIKE (GLR) genes. A search for jasmonate synthesis enzymes that might decode these signals revealed LOX6, a lipoxygenase that is necessary for much of the rapid accumulation of jasmonic acid at sites distal to wounds. Intriguingly, the LOX6 promoter is expressed in a distinct niche of cells that are adjacent to mature xylem vessels, a location that would make these contact cells sensitive to the release of xylem water column tension upon wounding. We propose a model in which rapid axial changes in xylem hydrostatic pressure caused by wounding travel through the vasculature and lead to slower, radially dispersed pressure changes that act in a clade 3 GLR-dependent mechanism to promote distal jasmonate synthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Breastfeeding effects on cognition are attributed to long-chain polyunsaturated fatty acids (LC-PUFAs), but controversy persists. Genetic variation in fatty acid desaturase (FADS) and elongase (ELOVL) enzymes has been overlooked when studying the effects of LC-PUFAs supply on cognition. We aimed to: 1) to determine whether maternal genetic variants in the FADS cluster and ELOVL genes contribute to differences in LC-PUFA levels in colostrum; 2) to analyze whether these maternal variants are related to child cognition; and 3) to assess whether children's variants modify breastfeeding effects on cognition. Methods: Data come from two population-based birth cohorts (n = 400 mother-child pairs from INMA-Sabadell; and n = 340 children from INMA-Menorca). LC-PUFAs were measured in 270 colostrum samples from INMA-Sabadell. Tag SNPs were genotyped both in mothers and children (13 in the FADS cluster, 6 in ELOVL2, and 7 in ELOVL5). Child cognition was assessed at 14 mo and 4 y using the Bayley Scales of Infant Development and the McCarthy Scales of Children"s Abilities, respectively. Results: Children of mothers carrying genetic variants associated with lower FADS1 activity (regulating AA and EPA synthesis), higher FADS2 activity (regulating DHA synthesis), and with higher EPA/AA and DHA/AA ratios in colostrum showed a significant advantage in cognition at 14 mo (3.5 to 5.3 points). Not being breastfed conferred an 8- to 9-point disadvantage in cognition among children GG homozygote for rs174468 (low FADS1 activity) but not among those with the A allele. Moreover, not being breastfed resulted in a disadvantage in cognition (5 to 8 points) among children CC homozygote for rs2397142 (low ELOVL5 activity), but not among those carrying the G allele. Conclusion: Genetically determined maternal supplies of LC-PUFAs during pregnancy and lactation appear to be crucial for child cognition. Breastfeeding effects on cognition are modified by child genetic variation in fatty acid desaturase and elongase enzymes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The existence of at least three isoforms of Na(+)-K(+)-ATPase in adult brain tissues [alpha 1, kidney type; alpha 2 [or alpha(+)]; alpha 3] suggests that these genes might be regulated in a cell-specific and time-dependent manner during development. We have studied this question in serum-free aggregating cell cultures of mechanically dissociated rat fetal telencephalon. At the protein level, the relative rate of synthesis of the pool of alpha 1-, alpha 2-, and alpha 3-subunits increased approximately twofold over 15 days of culture, leading to a marked increase in the immunochemical pool of alpha-subunits as measured by a panspecific polyclonal antibody. Concomitantly, Na(+)-K(+)-ATPase enzyme-specific activity increased three- (lower forebrain) to sixfold (upper forebrain). The transcripts of all three alpha-isoforms and beta-subunit were detected in vitro in similar proportion to the level observed in vivo. alpha 3-mRNA (3.7 kb) was more abundant than alpha 1 (3.7 kb) or alpha 2 (5.3 and 3.4 kb). Cytosine arabinoside (0.4 microM) and cholera toxin (0.1 microM) were used to selectively eliminate glial cells or neurons, respectively. It was found that alpha 2-mRNA is predominantly transcribed in glial cell cultures, whereas alpha 3- and beta 1-mRNA (2.7, 2.3, and 1.8 kb) are predominant in neuronal cultures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé Une caractéristique des cellules eucaryotes est le confinement du matériel génétique (ADN/DNA) dans le noyau. Pour décoder cette information, un ARN messager (mRNA) est d'abord transcrit sous forme d'un ARN prémessager (pré-mRNA). Ce-dernier doit subir plusieurs étapes de maturation pour aboutir à une particule ribonucléoprotéique (mRNP) qui sera exportée vers le cytoplasme et traduite en protéine. La protéine de levure Mex67p et son homologue humain TAP sont des récepteurs d'export médiant la translocation du mRNP au travers des complexes du pore nucléaire (NPC). Mex67p/TAP ne se lient pas directement au mRNA, mais nécessitent la présence de protéines adaptatrices, telles que Yra1p et son homologue humain REF1. Afin d'identifier de nouveaux facteurs impliqués dans l'export des mRNPs ou de nouvelles fonctions pour Yra1p, nous avons effectué un crible génétique avec un mutant thermosensible de Yra1p, GFP-yra 1 -8. Ce mutant présente un défaut d'export des mRNAs et une diminution des niveaux de transcrits du gène rapporteur LacZ ainsi que de certains transcrits endogènes. Nous avons trouvé que la perte de Mlp2p, ou d'une protéine hautement similaire, Mlp1p, restaure la croissance du mutant GFP-yra1-8 à température restrictive. Mlp1p et Mlp2p sont des protéines nucléaires, dont l'homologue humain est TPR. Les Mlp (myosin¬like proteins) ainsi que TPR forment des structures filamenteuses ancrées aux NPC. Bien que la fonction des Mlp ne soit pas clairement définie, un rôle dans la biogenèse et la surveillance des mRNPs a été récemment proposé. Notre étude montre que la perte des Mlp, non seulement restaure la croissance de GFP-yra1-8, mais augmente aussi les niveaux des transcrits LacZ et facilite leur apparition dans le cytoplasme. Des expériences d'immunoprécipitations de la chromatine révèlent que Mlp2p diminue le taux de synthèse du transcrit LacZ dans GFP-yra1-8. Des analyses du transcriptome montrent que Mlp2p réduit aussi les niveaux d'une population de transcrits endogènes dans le mutant. Finalement, des localisations in situ suggèrent que la transcription du rapporteur LacZ a lieu à la périphérie du noyau, à proximité des Mlp. Ainsi, les protéines Mlp pourraient préférentiellement diminuer la transcription de gènes exprimés à la périphérie nucléaire. Nous montrons aussi que Yra1p interagit génétiquement avec Nab2p une protéine liée au mRNA et impliquée dans son export, mais non avec d'autres protéines également impliquées dans l'export des mRNAs. Les résultats obtenus soutiennent un modèle où les protéines Yra1p et Nab2p sont nécessaires à l'arrimage des mRNPs sur la plate-forme des Mlp. Si ces signaux manquent ou sont défectueux, les mRNPs ne peuvent pas poursuivre leur trajet vers le canal central du NPC. Ce bloc induirait par la suite une diminution de la transcription d'une population de gènes potentiellement localisée à la périphérie nucléaire. Dans son ensemble, cette étude suggère que les protéines Mlp établissent un lien entre la transcription de certains mRNAs et leur export au travers du pore nucléaire. Summary A hallmark of the eukaryotic cell is the packaging of DNA in the nucleus. To decode the genetic information, a messenger RNA (mRNA) is first synthesized as a pre-mRNA molecule, which undergoes different maturation steps resulting in an mRNP (messenger RNA ribonucleoprotein), which can be actively transported to the cytoplasm and translated into a protein. Yeast Mex67p and its human homologue TAP are export receptors mediating mRNP translocation through the nuclear pore complex (NPC). The recruitment of Mex67p/TAP to mRNA is mediated by mRNA export adaptors of the evolutionarily conserved REF (RNA and Export Factor binding) family: yeast Yra1p and human REF1. To uncover new functions of Yra1p or new factors implicated in mRNA export, we performed a genetic screen with a themiosensitive (ts) yra1 mutant, GFP-yra1-8. This mutant exhibits mRNA export defects and a decrease in the levels of LacZ reporter and certain endogenous transcripts. We found that the loss of Mlp2p, or the related Mlp1p protein, substantially rescues the growth defect of the GFP-yra1 -8 mutant. Mlp1p and M1p2p are large non-essential proteins, homologous to human TPR, proposed to form intra-nuclear filamentous structures anchored at the NPC. Their role is not clearly defined, but they have been implicated in mRNP biogenesis and surveillance. Our study shows that loss of Mlp proteins not only restores growth of GFP-yra1-8, but also rescues LacZ mRNA levels and increases their appearance in the cytoplasm. Chromatin immunoprecipitation and pulse chase experiments indicate that Mlp2p down-regulates LacZ mRNA synthesis in GFP-yra1-8. DNA micro- array analyses reveal that Mlp2p also reduces the levels of a subset of cellular transcripts in the yra1 mutant strain. In situ localizations suggest that LacZ transcription occurs at the nuclear periphery, in close proximity to Mlp proteins. Thus, Mlp proteins may preferentially down-regulate genes expressed at the nuclear periphery. Finally, we show that Yra1p genetically interacts with the shuttling mRNA-binding protein Nab2p and that loss of Mlp proteins rescues the growth defect of yra1 and nab2, but not other mRNA export mutants. The data support a model in which Nab2p and Yra1p are required for rnRNP docking to the Mlp platform. Lack of these signals prevents mRNPs from crossing the Mlp gate. This block may then negatively feed-back on the transcription of a subset of genes, potentially located at the nuclear envelope. Overall, this study suggests that perinuclear Mlp proteins establish a link between mRNA transcription and export.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural and regulatory genes involved in the synthesis of antimicrobial metabolites are essential for the biocontrol activity of fluorescent pseudomonads and, in principle, amenable to genetic engineering for strain improvement. An eventual large-scale release of such bacteria raises the question of whether such genes also contribute to the persistence and dissemination of the bacteria in soil ecosystems. Pseudomonas fluorescens wild-type strain CHA0 protects plants against a variety of fungal diseases and produces several antimicrobial metabolites. The regulatory gene gacA globally controls antibiotic production and is crucial for disease suppression in CHA0. This gene also regulates the production of extracellular protease and phospholipase. The contribution of gacA to survival and vertical translocation of CHA0 in soil microcosms of increasing complexity was studied in coinoculation experiments with the wild type and a gacA mutant which lacks antibiotics and some exoenzymes. Both strains were marked with spontaneous resistance to rifampin. In a closed system with sterile soil, strain CHA0 and the gacA mutant multiplied for several weeks, whereas these strains declined exponentially in nonsterile soil of different Swiss origins. The gacA mutant was less persistent in nonrhizosphere raw soil than was the wild type, but no competitive disadvantage when colonizing the rhizosphere and roots of wheat was found in the particular soil type and during the period studied. Vertical translocation was assessed after strains had been applied to undisturbed, long (60-cm) or short (20-cm) soil columns, both planted with wheat. A smaller number of cells of the gacA mutant than of the wild type were detected in the percolated water and in different depths of the soil column. Single-strain inoculation gave similar results in all microcosms tested. We conclude that mutation in a single regulatory gene involved in antibiotic and exoenzyme synthesis can affect the survival of P. fluorescens more profoundly in unplanted soil than in the rhizosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Mammalian target of rapamycin (mTOR), a central regulator of cell growth, is found in two structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC)1 and mTORC2. The specific roles of each of these branches of mTOR signaling have not been dissected in the adult heart. In the present study, we aimed to bring new insights into the function of cardiac mTORC1-mediated signaling in physiological as well as pathological situations.Methods: We generated mice homozygous for loxP-flanked raptor and positive for the tamoxifen-inducible Cre recombinase (MerCreMer) under control of the α- myosin heavy chain promoter. The raptor gene encodes an essential component of mTORC1. Gene ablation was induced at the age of 10-12 weeks, and two weeks later the raptor cardiac-knockout (raptor-cKO) mice started voluntary cagewheel exercise or were subjected to transverse aortic constriction (TAC) to induce pressure overload.Results: In sedentary raptor-cKO mice, ejection fractions gradually decreased, resulting in significantly reduced values at 38 days (P < 0.001). Raptor-cKO mice started to die during the fifth week after the last tamoxifen injection. At that time, the mortality rate was 36% in sedentary (n = 11) and 64% in exercising (n = 14) mice. TAC-induced pressure overload resulted in severe cardiac dysfunction already at earlier timepoints. Thus, at 7-9 days after surgery, ejection fraction and fractional shortening values were 22.3% vs 43.5% and 10.2% vs 21.5% in raptor-cKO vs wild-type mice, respectively. This was accompanied by significant reductions of ventricular wall and septal thickness as well as an increase in left ventricular internal diameter. Moreover, ventricular weight to tibial length ratios were increased in wild-type, but not in the raptor-cKO TAC mice. Together, this shows that raptor-cKO mice rapidly developed dilated cardiomyopathy without going through a phase of adaptive hypertrophy. Expression of ANP and β-MHC was induced in all raptor-cKO mice irrespective of the cardiac load conditions. Consistent with reduced mTORC1 activity, phosphorylation of ribosomal S6 kinase and 4E-BP1 was blunted, indicating reduced protein synthesis. Moreover, expression of multiple genes involved in the regulation of energy metabolism was altered, and followed by a shift from fatty acid to glucose oxidation.Conclusion: Our study suggests that mTORC1 coordinates protein and energy metabolic pathways in the heart. Moreover, we demonstrate that raptor is essential for the cardiac adaptation to increased workload and importantly, also for normal physiological cardiac function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects resulting from the introduction of an oxime group in place of the distal aromatic ring of the diphenyl moiety of LT175, previously reported as a PPARα/γ dual agonist, have been investigated. This modification allowed the identification of new bioisosteric ligands with fairly good activity on PPARα and fine-tuned moderate activity on PPARγ. For the most interesting compound (S)-3, docking studies in PPARα and PPARγ provided a molecular explanation for its different behavior as full and partial agonist of the two receptor isotypes, respectively. A further investigation of this compound was carried out performing gene expression studies on HepaRG cells. The results obtained allowed to hypothesize a possible mechanism through which this ligand could be useful in the treatment of metabolic disorders. The higher induction of the expression of some genes, compared to selective agonists, seems to confirm the importance of a dual PPARα/γ activity which probably involves a synergistic effect on both receptor subtypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cystatin C (CstC) is a cysteine protease inhibitor of major clinical importance. Low concentration of serum CstC is linked to atherosclerosis. CstC can prevent formation of amyloid β associated with Alzheimer's disease and can itself form toxic aggregates. CstC regulates NO secretion by macrophages and is a TGF-β antagonist. Finally, the serum concentration of CstC is an indicator of kidney function. Yet, little is known about the regulation of CstC expression in vivo. In this study, we demonstrate that the transcription factor IFN regulatory factor 8 (IRF-8) is critical for CstC expression in primary dendritic cells. Only those cells with IRF-8 bound to the CstC gene promoter expressed high levels of the inhibitor. Secretion of IL-10 in response to inflammatory stimuli downregulated IRF-8 expression and consequently CstC synthesis in vivo. Furthermore, the serum concentration of CstC decreased in an IL-10-dependent manner in mice treated with the TLR9 agonist CpG. CstC synthesis is therefore more tightly regulated than hitherto recognized. The mechanisms involved in this regulation might be targeted to alter CstC production, with potential therapeutic value. Our results also indicate that caution should be exerted when using the concentration of serum CstC as an indicator of kidney function in conditions in which inflammation may alter CstC production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estradiol and progesterone are crucial for the acquisition of receptivity and the change in transcriptional activity of target genes in the implantation window. The aim of this study was to differentiate the regulation of genes in the endometrium of patients with recurrent implantation failure (IF) versus those who became pregnant after in vitro fertilization (IVF) treatment. Moreover, the effect of embryo-derived factors on endometrial transcriptional activity was studied. Nine women with known IVF outcome (IF, M, miscarriage, OP, ongoing pregnancy) and undergoing hysteroscopy with endometrial biopsy were enrolled. Biopsies were taken during the midluteal phase. After culture in the presence of embryo-conditioned IVF media, total RNA was extracted and submitted to reverse transcription, target cDNA synthesis, biotin labelling, fragmentation and hybridization using the Affymetrix Human Genome U133A 2.0 Chip. Differential expression of selected genes was re-analysed by quantitative PCR, in which the results were calculated as threshold cycle differences between the groups and normalized to Glyceraldehyde phosphate dehydrogenase and beta-actin. Differences were seen for several genes from endometrial tissue between the IF and the pregnancy groups, and when comparing OP with M, 1875 up- and 1807 down-regulated genes were returned. Real-time PCR analysis confirmed up-regulation for somatostatin, PLAP-2, mucin 4 and CD163, and down-regulation of glycodelin, IL-24, CD69, leukaemia inhibitory factor and prolactin receptor between Op and M. When the different embryo-conditioned media were compared, no significant differential regulation could be demonstrated. Although microarray profiling may currently not be sensitive enough for studying the effects of embryo-derived factors on the endometrium, the observed differences in gene expression between M and OP suggest that it will become an interesting tool for the identification of fertility-relevant markers produced by the endometrium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Medium-chain-length polyhydroxyalkanoates (PHAs) are polyesters having properties of biodegradable thermoplastics and elastomers that are naturally produced by a variety of pseudomonads. Saccharomyces cerevisiae was transformed with the Pseudomonas aeruginosa PHAC1 synthase modified for peroxisome targeting by the addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. The PHAC1 gene was put under the control of the promoter of the catalase A gene. PHA synthase expression and PHA accumulation were found in recombinant S. cerevisiae growing in media containing fatty acids. PHA containing even-chain monomers from 6 to 14 carbons was found in recombinant yeast grown on oleic acid, while odd-chain monomers from 5 to 15 carbons were found in PHA from yeast grown on heptadecenoic acid. The maximum amount of PHA accumulated was 0.45% of the dry weight. Transmission electron microscopy of recombinant yeast grown on oleic acid revealed the presence of numerous PHA inclusions found within membrane-bound organelles. Together, these data show that S. cerevisiae expressing a peroxisomal PHA synthase produces PHA in the peroxisome using the 3-hydroxyacyl coenzyme A intermediates of the beta-oxidation of fatty acids present in the media. S. cerevisiae can thus be used as a powerful model system to learn how fatty acid metabolism can be modified in order to synthesize high amounts of PHA in eukaryotes, including plants.