870 resultados para Gaylord labels
Resumo:
Principal Topic: ''In less than ten years music labels will not exist anymore.'' Michael Smelli, former Global COO Sony/BMG MCA/QUT IMP Business Lab Digital Music Think Thanks 9 May 2009, Brisbane Big music labels such as EMI, Sony BMG and UMG have been responsible for promoting and producing a myriad of stars in the music industry over the last decades. However, the industry structure is under enormous threat with the emergence of a new innovative era of digital music. Recent years have seen a dramatic shift in industry power with the emergence of Napster and other file sharing sites, iTunes and other online stores, iPod and the MP3 revolution. Myspace.com and other social networking sites are connecting entrepreneurial artists with fans and creating online music communities independent of music labels. In 2008 the digital music business internationally grew by around 25% to 3.7 Billion US-Dollar. Digital platforms now account for around 20% of recorded music sales, up from 15 % in 2007 (IFPI Digital music report 2009). CD sales have fallen by 40% since their peak levels. Global digital music sales totalled an estimated US$ 3 Billion in 2007, an increase of 40% on 2006 figures. Digital sales account for an estimated 15% of global market, up from 11% in 2006 and zero in 2003. The music industry is more advanced in terms of digital revenues than any other creative or entertainment industry (except games). Its digital share is more than twice that of newspapers (7%), films (35) or books (2%). All these shifts present new possibilities for music entrepreneurs to act entrepreneurially and promote their music independently of the major music labels. Diffusion of innovations has a long tradition in both sociology (e.g. Rogers 1962, 2003) and marketing (Bass 1969, Mahajan et al., 1990). The context of the current project is theoretically interesting in two respects. First, the role of online social networks replaces traditional face-to-face word of mouth communications. Second, as music is a hedonistic product, this strongly influences the nature of interpersonal communications and their diffusion patterns. Both of these have received very little attention in the diffusion literature to date, and no studies have investigated the influence of both simultaneously. This research project is concerned with the role of social networks in this new music industry landscape, and how this may be leveraged by musicians willing to act entrepreneurially. Our key research question we intend to address is: How do online social network communities impact the nature, pattern and speed that music diffuses? Methodology/Key Propositions : We expect the nature/ character of diffusion of popular, generic music genres to be different from specialized, niche music. To date, only Moe & Fader (2002) and Lee et al. (2003) investigated diffusion patterns of music and these focus on forecast weekly sales of music CDs based on the advance purchase orders before the launch, rather than taking a detailed look at diffusion patterns. Consequently, our first research questions are concerned with understanding the nature of online communications within the context of diffusion of music and artists. Hence, we have the following research questions: RQ1: What is the nature of fan-to-fan ''word of mouth'' online communications for music? Do these vary by type of artist and genre of music? RQ2: What is the nature of artist-to-fan online communications for music? Do these vary by type of artist and genre of music? What types of communication are effective? Two outcomes from research social network theory are particularly relevant to understanding how music might diffuse through social networks. Weak tie theory (Granovetter, 1973), argues that casual or infrequent contacts within a social network (or weak ties) act as a link to unique information which is not normally contained within an entrepreneurs inner circle (or strong tie) social network. A related argument, structural hole theory (Burt, 1992), posits that it is the absence of direct links (or structural holes) between members of a social network which offers similar informational benefits. Although these two theories argue for the information benefits of casual linkages, and diversity within a social network, others acknowledge that a balanced network which consists of a mix of strong ties, weak ties is perhaps more important overall (Uzzi, 1996). It is anticipated that the network structure of the fan base for different types of artists and genres of music will vary considerably. This leads to our third research question: RQ3: How does the network structure of online social network communities impact the pattern and speed that music diffuses? The current paper is best described as theory elaboration. It will report the first exploratory phase designed to develop and elaborate relevant theory (the second phase will be a quantitative study of network structure and diffusion). We intend to develop specific research propositions or hypotheses from the above research questions. To do so we will conduct three focus group discussions of independent musicians and three focus group discussions of fans active in online music communication on social network sites. We will also conduct five case studies of bands that have successfully built fan bases through social networking sites (e.g. myspace.com, facebook.com). The idea is to identify which communication channels they employ and the characteristics of the fan interactions for different genres of music. We intend to conduct interviews with each of the artists and analyse their online interaction with their fans. Results and Implications : At the current stage, we have just begun to conduct focus group discussions. An analysis of the themes from these focus groups will enable us to further refine our research questions into testable hypotheses. Ultimately, our research will provide a better understanding of how social networks promote the diffusion of music, and how this varies for different genres of music. Hence, some music entrepreneurs will be able to promote their music more effectively. The results may be further generalised to other industries where online peer-to-peer communication is common, such as other forms of entertainment and consumer technologies.
Resumo:
In this paper, we examine the design of business process diagrams in contexts where novice analysts only have basic design tools such as paper and pencils available, and little to no understanding of formalized modeling approaches. Based on a quasi-experimental study with 89 BPM students, we identify five distinct process design archetypes ranging from textual to hybrid, and graphical representation forms. We also examine the quality of the designs and identify which representation formats enable an analyst to articulate business rules, states, events, activities, temporal and geospatial information in a process model. We found that the quality of the process designs decreases with the increased use of graphics and that hybrid designs featuring appropriate text labels and abstract graphical forms are well-suited to describe business processes. Our research has implications for practical process design work in industry as well as for academic curricula on process design.
Resumo:
Speaker verification is the process of verifying the identity of a person by analysing their speech. There are several important applications for automatic speaker verification (ASV) technology including suspect identification, tracking terrorists and detecting a person’s presence at a remote location in the surveillance domain, as well as person authentication for phone banking and credit card transactions in the private sector. Telephones and telephony networks provide a natural medium for these applications. The aim of this work is to improve the usefulness of ASV technology for practical applications in the presence of adverse conditions. In a telephony environment, background noise, handset mismatch, channel distortions, room acoustics and restrictions on the available testing and training data are common sources of errors for ASV systems. Two research themes were pursued to overcome these adverse conditions: Modelling mismatch and modelling uncertainty. To directly address the performance degradation incurred through mismatched conditions it was proposed to directly model this mismatch. Feature mapping was evaluated for combating handset mismatch and was extended through the use of a blind clustering algorithm to remove the need for accurate handset labels for the training data. Mismatch modelling was then generalised by explicitly modelling the session conditions as a constrained offset of the speaker model means. This session variability modelling approach enabled the modelling of arbitrary sources of mismatch, including handset type, and halved the error rates in many cases. Methods to model the uncertainty in speaker model estimates and verification scores were developed to address the difficulties of limited training and testing data. The Bayes factor was introduced to account for the uncertainty of the speaker model estimates in testing by applying Bayesian theory to the verification criterion, with improved performance in matched conditions. Modelling the uncertainty in the verification score itself met with significant success. Estimating a confidence interval for the "true" verification score enabled an order of magnitude reduction in the average quantity of speech required to make a confident verification decision based on a threshold. The confidence measures developed in this work may also have significant applications for forensic speaker verification tasks.
Resumo:
Students with learning disabilities (LD) often experience significant feelings of loneliness. There is some evidence to suggest that these feelings of loneliness may be related to social difficulties that are linked to their learning disability. Adolescents experience more loneliness than any other age group, primarily because this is a time of identity formation and self-evaluation. Therefore, adolescents with learning disabilities are highly likely to experience the negative feelings of loneliness. Many areas of educational research have highlighted the impact of negative feelings on learning. This begs the question, =are adolescents with learning disabilities doubly disadvantaged in regard to their learning?‘ That is, if their learning experience is already problematic, does loneliness exacerbate these learning difficulties? This thesis reveals the findings of a doctoral project which examined this complicated relationship between loneliness and classroom participation using a social cognitive framework. In this multiple case-study design, narratives were constructed using classroom observations and interviews which were conducted with 4 adolescent students (2 girls and 2 boys, from years 9-12) who were identified as likely to be experiencing learning disabilities. Discussion is provided on the method used to identify students with learning disabilities and the related controversy of using disability labels. A key aspect of the design was that it allowed the students to relate their school experiences and have their stories told. The design included an ethnographic element in its focus on the interactions of the students within the school as a culture and elements of narrative inquiry were used, particularly in reporting the results. The narratives revealed all participants experienced problematic social networks. Further, an alarmingly high level of bullying was discovered. Participants reported that when they were feeling rejected or were missing a valued other they had little cognitive energy for learning and did not want to be in school. Absenteeism amongst the group was high, but this was also true for the rest of the school population. A number of relationships emerged from the narratives using social cognitive theory. These relationships highlighted the impact of cognitive, behavioural and environmental factors in the school experience of lonely students with learning disabilities. This approach reflects the social model of disability that frames the research.
Resumo:
Recent years have seen an increased uptake of business process management technology in industries. This has resulted in organizations trying to manage large collections of business process models. One of the challenges facing these organizations concerns the retrieval of models from large business process model repositories. For example, in some cases new process models may be derived from existing models, thus finding these models and adapting them may be more effective and less error-prone than developing them from scratch. Since process model repositories may be large, query evaluation may be time consuming. Hence, we investigate the use of indexes to speed up this evaluation process. To make our approach more applicable, we consider the semantic similarity between labels. Experiments are conducted to demonstrate that our approach is efficient.
Resumo:
The increasing ubiquity of digital technology, internet ser-vices and social media in our everyday lives allows for a seamless transitioning between the visible and the invisible infrastructure of cities: road systems, building complexes, information and communication technology, and people networks create a buzzing environment that is alive and exciting. Driven by curiosity, initiative and interdiscipli-nary exchange, the Urban Informatics Research Lab at Queensland University of Technology (QUT), Brisbane, Australia, is an emerging cluster of people interested in research and development at the intersection of people, place and technology with a focus on cities, locative media and mobile technology. This paper seeks to define, for the first time, what we mean by ‘urban informatics’ and outline its significance as a field of study today. It describes the relevant background and trends in each of the areas of peo-ple, place and technology, and highlights the relevance of urban informatics to the concerns and evolving challenges of CSCW. We then position our work in academia juxta-posed with related research concentrations and labels, fol-lowed by a discussion of disciplinary influences. The paper concludes with an exposé of the three current research themes of the lab around augmented urban spaces, urban narratives, and environmental sustainability in order to illustrate specific cases and methods, and to draw out distinctions that our affiliation with the Creative Industries Faculty affords.
Resumo:
With regard to the long-standing problem of the semantic gap between low-level image features and high-level human knowledge, the image retrieval community has recently shifted its emphasis from low-level features analysis to high-level image semantics extrac- tion. User studies reveal that users tend to seek information using high-level semantics. Therefore, image semantics extraction is of great importance to content-based image retrieval because it allows the users to freely express what images they want. Semantic content annotation is the basis for semantic content retrieval. The aim of image anno- tation is to automatically obtain keywords that can be used to represent the content of images. The major research challenges in image semantic annotation are: what is the basic unit of semantic representation? how can the semantic unit be linked to high-level image knowledge? how can the contextual information be stored and utilized for image annotation? In this thesis, the Semantic Web technology (i.e. ontology) is introduced to the image semantic annotation problem. Semantic Web, the next generation web, aims at mak- ing the content of whatever type of media not only understandable to humans but also to machines. Due to the large amounts of multimedia data prevalent on the Web, re- searchers and industries are beginning to pay more attention to the Multimedia Semantic Web. The Semantic Web technology provides a new opportunity for multimedia-based applications, but the research in this area is still in its infancy. Whether ontology can be used to improve image annotation and how to best use ontology in semantic repre- sentation and extraction is still a worth-while investigation. This thesis deals with the problem of image semantic annotation using ontology and machine learning techniques in four phases as below. 1) Salient object extraction. A salient object servers as the basic unit in image semantic extraction as it captures the common visual property of the objects. Image segmen- tation is often used as the �rst step for detecting salient objects, but most segmenta- tion algorithms often fail to generate meaningful regions due to over-segmentation and under-segmentation. We develop a new salient object detection algorithm by combining multiple homogeneity criteria in a region merging framework. 2) Ontology construction. Since real-world objects tend to exist in a context within their environment, contextual information has been increasingly used for improving object recognition. In the ontology construction phase, visual-contextual ontologies are built from a large set of fully segmented and annotated images. The ontologies are composed of several types of concepts (i.e. mid-level and high-level concepts), and domain contextual knowledge. The visual-contextual ontologies stand as a user-friendly interface between low-level features and high-level concepts. 3) Image objects annotation. In this phase, each object is labelled with a mid-level concept in ontologies. First, a set of candidate labels are obtained by training Support Vectors Machines with features extracted from salient objects. After that, contextual knowledge contained in ontologies is used to obtain the �nal labels by removing the ambiguity concepts. 4) Scene semantic annotation. The scene semantic extraction phase is to get the scene type by using both mid-level concepts and domain contextual knowledge in ontologies. Domain contextual knowledge is used to create scene con�guration that describes which objects co-exist with which scene type more frequently. The scene con�guration is represented in a probabilistic graph model, and probabilistic inference is employed to calculate the scene type given an annotated image. To evaluate the proposed methods, a series of experiments have been conducted in a large set of fully annotated outdoor scene images. These include a subset of the Corel database, a subset of the LabelMe dataset, the evaluation dataset of localized semantics in images, the spatial context evaluation dataset, and the segmented and annotated IAPR TC-12 benchmark.
Resumo:
Increased crash risk is associated with sedative medications and researchers and health-professionals have called for improvements to medication warnings about driving. The tiered warning system in France since 2005 indicates risk level, uses a color-coded pictogram, and advises the user to seek the advice of a doctor before driving. In Queensland, Australia, the mandatory warning on medications that may cause drowsiness advises the user not to drive or operate machinery if they self-assess that they are affected, and calls attention to possible increased impairment when combined with alcohol. Objectives The reported aims of the study were to establish and compare risk perceptions associated with the Queensland and French warnings among medication users. It was conducted to complement the work of DRUID in reviewing the effectiveness of existing campaigns and practice guidelines. Methods Medication users in France and Queensland were surveyed using warnings about driving from both contexts to compare risk perceptions associated with each label. Both samples were assessed for perceptions of the warning that carried the strongest message of risk. The Queensland study also included perceptions of the likelihood of crash and level of impairment associated with the warning. Results Findings from the French study (N = 75) indicate that when all labels were compared, the majority of respondents perceived the French Level-3 label as the strongest warning about risk concerning driving. Respondents in Queensland had significantly stronger perceptions of potential impairment to driving ability, z = -13.26, p <.000 (n = 325), and potential chance of having a crash, z = -11.87, p < .000 (n = 322), after taking a medication that displayed the strongest French warning, compared with the strongest Queensland warning. Conclusions Evidence suggests that warnings about driving displayed on medications can influence risk perceptions associated with use of medication. Further analyses will determine whether risk perceptions influence compliance with the warnings.
Resumo:
This paper presents a framework for performing real-time recursive estimation of landmarks’ visual appearance. Imaging data in its original high dimensional space is probabilistically mapped to a compressed low dimensional space through the definition of likelihood functions. The likelihoods are subsequently fused with prior information using a Bayesian update. This process produces a probabilistic estimate of the low dimensional representation of the landmark visual appearance. The overall filtering provides information complementary to the conventional position estimates which is used to enhance data association. In addition to robotics observations, the filter integrates human observations in the appearance estimates. The appearance tracks as computed by the filter allow landmark classification. The set of labels involved in the classification task is thought of as an observation space where human observations are made by selecting a label. The low dimensional appearance estimates returned by the filter allow for low cost communication in low bandwidth sensor networks. Deployment of the filter in such a network is demonstrated in an outdoor mapping application involving a human operator, a ground and an air vehicle.
Resumo:
The XML Document Mining track was launched for exploring two main ideas: (1) identifying key problems and new challenges of the emerging field of mining semi-structured documents, and (2) studying and assessing the potential of Machine Learning (ML) techniques for dealing with generic ML tasks in the structured domain, i.e., classification and clustering of semi-structured documents. This track has run for six editions during INEX 2005, 2006, 2007, 2008, 2009 and 2010. The first five editions have been summarized in previous editions and we focus here on the 2010 edition. INEX 2010 included two tasks in the XML Mining track: (1) unsupervised clustering task and (2) semi-supervised classification task where documents are organized in a graph. The clustering task requires the participants to group the documents into clusters without any knowledge of category labels using an unsupervised learning algorithm. On the other hand, the classification task requires the participants to label the documents in the dataset into known categories using a supervised learning algorithm and a training set. This report gives the details of clustering and classification tasks.
Resumo:
Women and Representation in Local Government opens up an opportunity to critique and move beyond suppositions and labels in relation to women in local government. Presenting a wealth of new empirical material, this book brings together international experts to examine and compare the presence of women at this level and features case studies on the US, UK, France, Germany, Spain, Finland, Uganda, China, Australia and New Zealand. Divided into four main sections, each explores a key theme related to the subject of women and representation in local government and engages with contemporary gender theory and the broader literature on women and politics. The contributors explore local government as a gendered environment; critiquing strategies to address the limited number of elected female members in local government and examine the impact of significant recent changes on local government through a gender lens. Addressing key questions of how gender equality can be achieved in this sector, it will be of strong interest to students and academics working in the fields of gender studies, local government and international politics.
Resumo:
We study model selection strategies based on penalized empirical loss minimization. We point out a tight relationship between error estimation and data-based complexity penalization: any good error estimate may be converted into a data-based penalty function and the performance of the estimate is governed by the quality of the error estimate. We consider several penalty functions, involving error estimates on independent test data, empirical VC dimension, empirical VC entropy, and margin-based quantities. We also consider the maximal difference between the error on the first half of the training data and the second half, and the expected maximal discrepancy, a closely related capacity estimate that can be calculated by Monte Carlo integration. Maximal discrepancy penalty functions are appealing for pattern classification problems, since their computation is equivalent to empirical risk minimization over the training data with some labels flipped.
Resumo:
Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive semidefinite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space - classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -using the labeled part of the data one can learn an embedding also for the unlabeled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method for learning the 2-norm soft margin parameter in support vector machines, solving an important open problem.
Resumo:
We consider the problem of structured classification, where the task is to predict a label y from an input x, and y has meaningful internal structure. Our framework includes supervised training of Markov random fields and weighted context-free grammars as special cases. We describe an algorithm that solves the large-margin optimization problem defined in [12], using an exponential-family (Gibbs distribution) representation of structured objects. The algorithm is efficient—even in cases where the number of labels y is exponential in size—provided that certain expectations under Gibbs distributions can be calculated efficiently. The method for structured labels relies on a more general result, specifically the application of exponentiated gradient updates [7, 8] to quadratic programs.