920 resultados para Gas flow


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A unique hand-held gene gun is employed for ballistically delivering biomolecules to key cells in the skin and mucosa in the treatment of the major diseases. One of these types of devices, called the Contoured Shock Tube (CST), delivers powdered micro-particles to the skin with a narrow and highly controllable velocity distribution and a nominally uniform spatial distribution. In this paper, we apply a numerical approach to gain new insights in to the behavior of the CST prototype device. The drag correlations proposed by Henderson (1976), Igra and Takayama (1993) and Kurian and Das (1997) were applied to predict the micro-particle transport in a numerically simulated gas flow. Simulated pressure histories agree well with the corresponding static and Pitot pressure measurements, validating the CFD approach. The calculated velocity distributions show a good agreement, with the best prediction from Igra & Takayama correlation (maximum discrepancy of 5%). Key features of the gas dynamics and gas-particle interaction are discussed. Statistic analyses show a tight free-jet particle velocity distribution is achieved (570 +/- 14.7 m/s) for polystyrene particles (39 +/- 1 mu m), representative of a drug payload.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is important to maintain a uniform distribution of gas and liquid in large diameter packed columns to maintain mass transfer efficiency on scaling up. This work presents measurements and methods of evaluating maldistributed gas flow in packed columns. Little or no previous work has been done in this field. A gas maldistribution number, F, was defined, based on point to point velocity variations in the gas emerging from the top of packed beds. f has a minimum value for a uniformly distributed flow and much larger values for maldistributed flows. A method of testing the quality of vapour distributors is proposed, based on "the variation of f with packed height. A good gas distributor requires a short packed depth to give a good gas distribution. Measurements of gas maldistribution have shown that the principle of dynamic similarity is satisfied if two geometrically similar beds are operated at the same Reynold's number. The validity of f as a good measure of gas maldistribution, and the principle of dynamic similarity are tested statistically by Multi-Factor Analysis of the variance, and visually by the response "surfaces technique. Pressure distribution has been measured in a model of a large diameter packed bed, and shown to be associated with the velocity of the gas in a tangential feed pipe. Two simplified theoretical models are proposed to describe the flow of gases through packed beds and to support the principle of dynamic similarity. These models explain why the packed bed itself causes the flow of gas to become more uniformly distributed. A 1.2m. diameter scaled-down model was constructed geometrically similar to a 7.3m. diameter vacuum crude distillation column. The previously known internal cylinder gas distributor was tested. Three new distributors suitable for use in a large diameter column were developed and tested, these are: Internal Cylinder with Slots and Cross Baffles, Internal Cylinder with Guides in the Annulus, Internal Cylinder with Internal Cross Baffles - It has been shown that this is an excellent distributor.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Not withstanding the high demand of metal powder for automotive and High Tech applications, there are still many unclear aspects of the production process. Only recentlyhas supercomputer performance made possible numerical investigation of such phenomena. This thesis focuses on the modelling aspects of primary and secondary atomization. Initially two-dimensional analysis is carried out to investigate the influence of flow parameters (reservoir pressure and gas temperature principally) and nozzle geometry on final powder yielding. Among the different types, close coupled atomizers have the best performance in terms of cost and narrow size distribution. An isentropic contoured nozzle is introduced to minimize the gas flow losses through shock cells: the results demonstrate that it outperformed the standard converging-diverging slit nozzle. Furthermore the utilization of hot gas gave a promising outcome: the powder size distribution is narrowed and the gas consumption reduced. In the second part of the thesis, the interaction of liquid metal and high speed gas near the feeding tube exit was studied. Both axisymmetric andnon-axisymmetric geometries were simulated using a 3D approach. The filming mechanism was detected only for very small metal flow rates (typically obtained in laboratory scale atomizers). When the melt flow increased, the liquid core overtook the adverse gas flow and entered in the high speed wake directly: in this case the disruption isdriven by sinusoidal surface waves. The process is characterized by fluctuating values of liquid volumes entering the domain that are monitored only as a time average rate: it is far from industrial robustness and capability concept. The non-axisymmetric geometry promoted the splitting of the initial stream into four cores, smaller in diameter and easier to atomize. Finally a new atomization design based on the lesson learned from previous cases simulation is presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Packed beds have many industrial applications and are increasingly used in the process industries due to their low pressure drop. With the introduction of more efficient packings, novel packing materials (i.e. adsorbents) and new applications (i.e. flue gas desulphurisation); the aspect ratio (height to diameter) of such beds is decreasing. Obtaining uniform gas distribution in such beds is of crucial importance in minimising operating costs and optimising plant performance. Since to some extent a packed bed acts as its own distributor the importance of obtaining uniform gas distribution has increased as aspect ratios (bed height to diameter) decrease. There is no rigorous design method for distributors due to a limited understanding of the fluid flow phenomena and in particular of the effect of the bed base / free fluid interface. This study is based on a combined theoretical and modelling approach. The starting point is the Ergun Equation which is used to determine the pressure drop over a bed where the flow is uni-directional. This equation has been applied in a vectorial form so it can be applied to maldistributed and multi-directional flows and has been realised in the Computational Fluid Dynamics code PHOENICS. The use of this equation and its application has been verified by modelling experimental measurements of maldistributed gas flows, where there is no free fluid / bed base interface. A novel, two-dimensional experiment has been designed to investigate the fluid mechanics of maldistributed gas flows in shallow packed beds. The flow through the outlet of the duct below the bed can be controlled, permitting a rigorous investigation. The results from this apparatus provide useful insights into the fluid mechanics of flow in and around a shallow packed bed and show the critical effect of the bed base. The PHOENICS/vectorial Ergun Equation model has been adapted to model this situation. The model has been improved by the inclusion of spatial voidage variations in the bed and the prescription of a novel bed base boundary condition. This boundary condition is based on the logarithmic law for velocities near walls without restricting the velocity at the bed base to zero and is applied within a turbulence model. The flow in a curved bed section, which is three-dimensional in nature, is examined experimentally. The effect of the walls and the changes in gas direction on the gas flow are shown to be particularly significant. As before, the relative amounts of gas flowing through the bed and duct outlet can be controlled. The model and improved understanding of the underlying physical phenomena form the basis for the development of new distributors and rigorous design methods for them.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Studies into gas-liquid flow patterns were carried out on commercial scale sieve trays where the ratio of froth depth to flow path length is typical of that found in practice. Experiments were conducted on a 2.44 m diameter air-water distillation simulator, in which flow patterns were investigated by direct observation, using directional flow pointers; by water cooling, to simulate mass transfer; and by height of clear liquid measurements across the tray. The flow rates used are typical of those found in practice. The approach adopted was to investigate the effect of the gas flow on the liquid flow by comparing water only flow patterns across an unperforated tray with air-water flow patterns on perforated trays. Initial gas-liquid contacting experiments on the 6.35 mm hole tray showed that, under certain conditions, the gas flow pattern beneath the test tray can have a significant effect on the tray liquid flow pattern such that gas-driven liquid circulation was produced. This was found to be a function of this particular air-water simulator design, and as far as is known this is the first time that this phenomenon has been observed. Consequently non-uniform gas flow effects were removed by modification of the gas distribution system. By eliminating gas circulation effects, the effect of the gas flow on the separation of liquid flow was similar to that obtained on the 1.0 mm hole tray (Hine, 1990). That is, flow separation occurred at the ends of the inlet downcomer which produced large circulating zones along the tray segments both on the non-perforated and perforated trays. The air when forced through the liquid, inhibited circulating flow such that it only occurred at high water inlet velocities. With the 6.35 mm hole tray, the growth and velocity of circulating flow was reduced at high superficial air velocities, and in the experiments to simulate distillation, liquid was in forward flow over most of the tray.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work is concerned with a study of certain phenomena related to the performance and design of distributors in gas fluidized beds with particular regard to flowback of solid particles. The work to be described is divided into two parts. I. In Part one, a review of published material pertaining to distribution plates, including details from the patent specifications, has been prepared. After a chapter on the determination of the incipient fluidizing velocity, the following aspects of multi-orifice distributor plates in gas fluidized beds have been studied: (i) The effect of the distributor on bubble formation related to the way in which even distribution of bubbles on the top surface of the fluidized bed is obtained, e.g. the desirable pressure drop ratio ?PD/?PB for the even distribution of gas across the bed. Ratios of distributor pressure drop ?PD to bed pressure drop at which stable fluidization occurs show reasonable agreement with industrial practice. There is evidence that larger diameter beds tend to be less stable than smaller diameter beds when these are operated with shallow beds. Experiments show that in the presence of the bed the distributor pressure drop is reduced relative to the pressure drop without the bed, and this pressure drop in the former condition is regarded as the appropriate parameter for the design of the distributor. (ii) Experimental measurements of bubble distribution at the surface has been used to indicate maldistribution within the bed. Maldistribution is more likely at low gas flow rates and with distributors having large fractional free area characteristics (i.e. with distributors having low pressure drops). Bubble sizes obtained from this study, as well as those of others, have been successfully correlated. The correlation produced implies the existence of a bubble at the surface of an orifice and its growth by the addition of excess gas from the fluidized bed. (iii) For a given solid system, the amount of defluidized particles stagnating on the distributor plate is influenced by the orifice spacing, bed diameter and gas flow rate, but independent of the initial bed height and the way the orifices are arranged on the distributor plate. II. In Part two, solids flowback through single and multi-orifice distributors in two-dimensional and cylindrical beds of solids fluidized with air has been investigated. Distributors equipped with long cylindrical nozzles have also been included in the study. An equation for the prediction of free flowback of solids through multi-orifice distributors has been derived. Under fluidized conditions two regimes of flowback have been differentiated, namely Jumping and weeping. Data in the weeping regime have been successfully correlated. The limiting gas velocity through the distributor orifices at which flowback is completely excluded is found to be indepnndent of bed height, but a function of distributor design and physical properties of gas and solid used. A criterion for the prediction of this velocity has been established. The decisive advantage of increasing the distributor thickness or using nozzles to minimize solids flowback in fluidized beds has been observed and the opportunity taken to explore this poorly studied subject area. It has been noted, probably for the first time, that with long nozzles, there exists a critical nozzle length above which uncontrollable downflow of solids occurs. A theoretical model for predicting the critical length of a bundle of nozzles in terms of gas velocity through the nozzles has been set up. Theoretical calculations compared favourably with experiments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A study has been made of the effects of welding and material variables on the occurrence of porosity in tungsten inert gas arc welding of copper. The experiments were based on a statistical design and variables included, welding current, welding speed, arc atmosphere composition, inert gas flow rate, weld preparation, and base material. The extent of weld metal porosity was assessed by density measurement and its morphology by X-ray radiography and metallography. In conjunction with this the copper-steam reaction has been investigated under conditions of controlled atmosphere arc melting. The welding experiments have shown that the extent of steam porosity is increased by increased water vapour content of the arc atmosphere, increased oxygen content of the base material and decreased welding speed. The arc melting experiments have shown that the steam reaction occurs in the body of the weld pool and proceeds to an apparent equi1ibrium state appropriate to to its temperature, the hydrogen and oxygen being supplied by the dissociation of water vapour in the arc atmosphere. It has been shown conclusively that nitrogen porosity can occur in the tungsten inert gas arc welding of copper and that this porosity can be eliminated by using filler wires containing small amounts of aluminum and titanium. Since it has been shown to be much more difficult to produce sound butt welds than melt runs it has been concluded that the porosity associated with joint fit up is due to nitrogen entrained into tho arc atmosphere. Clearly atmospheric entrainment would also, to a much lesser extent, involve water vapour. From a practical welding point of view it has thus been postulated that use of a filler wire containing small amounts of aluminum and/or titanium would eliminate both forms of porosity since these elements are both strongJy deoxidising and denitriding.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tin oxide is considered to be one of the most promising semiconductor oxide materials for use as a gas sensor. However, a simple route for the controllable build-up of nanostructured, sufficiently pure and hierarchical SnO2 structures for gas sensor applications is still a challenge. In the current work, an aqueous SnO2 nanoparticulate precursor sol, which is free of organic contaminants and sorbed ions and is fully stable over time, was prepared in a highly reproducible manner from an alkoxide Sn(OR)4 just by mixing it with a large excess of pure neutral water. The precursor is formed as a separate liquid phase. The structure and purity of the precursor is revealed using XRD, SAXS, EXAFS, HRTEM imaging, FTIR, and XRF analysis. An unconventional approach for the estimation of the particle size based on the quantification of the Sn-Sn contacts in the structure was developed using EXAFS spectroscopy and verified using HRTEM. To construct sensors with a hierarchical 3D structure, we employed an unusual emulsification technique not involving any additives or surfactants, using simply the extraction of the liquid phase, water, with the help of dry butanol under ambient conditions. The originally generated crystalline but yet highly reactive nanoparticles form relatively uniform spheres through self-assembly and solidify instantly. The spheres floating in butanol were left to deposit on the surface of quartz plates bearing sputtered gold electrodes, producing ready-for-use gas sensors in the form of ca. 50 μm thick sphere-based-films. The films were dried for 24 h and calcined at 300°C in air before use. The gas sensitivity of the structures was tested in the temperature range of 150-400°C. The materials showed a very quickly emerging and reversible (20-30 times) increase in electrical conductivity as a response to exposure to air containing 100 ppm of H2 or CO and short (10 s) recovery times when the gas flow was stopped.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents flow regimes identification methodology in multiphase system in annular, stratified and homogeneous oil-water-gas regimes. The principle is based on recognition of the pulse height distributions (PHD) from gamma-ray with supervised artificial neural network (ANN) systems. The detection geometry simulation comprises of two NaI(Tl) detectors and a dual-energy gamma-ray source. The measurement of scattered radiation enables the dual modality densitometry (DMD) measurement principle to be explored. Its basic principle is to combine the measurement of scattered and transmitted radiation in order to acquire information about the different flow regimes. The PHDs obtained by the detectors were used as input to ANN. The data sets required for training and testing the ANN were generated by the MCNP-X code from static and ideal theoretical models of multiphase systems. The ANN correctly identified the three different flow regimes for all data set evaluated. The results presented show that PHDs examined by ANN may be applied in the successfully flow regime identification.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"AFOSR TN-58-625. ASTIA doc. no. AD 162 155."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Proton exchange membrane (PEM) fuel cell has been known as a promising power source for different applications such as automotive, residential and stationary. During the operation of a PEM fuel cell, hydrogen is oxidized in anode and oxygen is reduced in the cathode to produce the intended power. Water and heat are inevitable byproducts of these reactions. The water produced in the cathode should be properly removed from inside the cell. Otherwise, it may block the path of reactants passing through the gas channels and/or gas diffusion layer (GDL). This deteriorates the performance of the cell and eventually can cease the operation of the cell. Water transport in PEM fuel cell has been the subject of this PhD study. Water transport on the surface of the GDL, through the gas flow channels, and through GDL has been studied in details. For water transport on the surface of the GDL, droplet detachment has been measured for different GDL conditions and for anode and cathode gas flow channels. Water transport through gas flow channels has been investigated by measuring the two-phase flow pressure drop along the gas flow channels. As accumulated liquid water within gas flow channels resists the gas flow, the pressure drop increases along the flow channels. The two-phase flow pressure drop can reveal useful information about the amount of liquid water accumulated within gas flow channels. Liquid water transport though GDL has also been investigated by measuring the liquid water breakthrough pressure for the region between the capillary fingering and the stable displacement on the drainage phase diagram. The breakthrough pressure has been measured for different variables such as GDL thickness, PTFE/Nafion content within the GDL, GDL compression, the inclusion of a micro-porous layer (MPL), and different water flow rates through the GDL. Prior to all these studies, GDL microstructural properties have been studied. GDL microstructural properties such as mean pore diameter, pore diameter distribution, and pore roundness distribution have been investigated by analyzing SEM images of GDL samples.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this study is to identify the optimal designs of converging-diverging supersonic and hypersonic nozzles that perform at maximum uniformity of thermodynamic and flow-field properties with respect to their average values at the nozzle exit. Since this is a multi-objective design optimization problem, the design variables used are parameters defining the shape of the nozzle. This work presents how variation of such parameters can influence the nozzle exit flow non-uniformities. A Computational Fluid Dynamics (CFD) software package, ANSYS FLUENT, was used to simulate the compressible, viscous gas flow-field in forty nozzle shapes, including the heat transfer analysis. The results of two turbulence models, k-e and k-ω, were computed and compared. With the analysis results obtained, the Response Surface Methodology (RSM) was applied for the purpose of performing a multi-objective optimization. The optimization was performed with ModeFrontier software package using Kriging and Radial Basis Functions (RBF) response surfaces. Final Pareto optimal nozzle shapes were then analyzed with ANSYS FLUENT to confirm the accuracy of the optimization process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrical performance of indium tin oxide (ITO) coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multi-wall carbon nanotubes (MWCNTs) were synthesized by chemical vapor deposition, using ultra-thin Fe layers as catalyst. The process parameters (temperature, gas flow and duration) were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the MWCNT-enhanced electrodes are found to improve the charge carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.