965 resultados para Gas chromatography - GC-FID
Resumo:
Gasoline Homogeneous Charge Compression Ignition (HCCI) combustion has been studied widely in the past decade. However, in HCCI engines using negative valve overlap (NVO), there is still uncertainty as to whether the effect of pilot injection during NVO on the start of combustion is primarily due to heat release of the pilot fuel during NVO or whether it is due to pilot fuel reformation. This paper presents data taken on a 4-cylinder gasoline direct injection, spark ignition/HCCI engine with a dual cam system, capable of recompressing residual gas. Engine in-cylinder samples are extracted at various points during the engine cycle through a high-speed sampling system and directly analysed with a gas chromatograph and flame ionisation detector. Engine parameter sweeps are performed for different pilot injection timings and quantities at a medium load point. Results show that for lean engine running conditions, earlier pilot injection timing leads to partial oxidation of the injected pilot fuel during NVO, while the fraction of light hydrocarbons remains constant for all parameter variations investigated. The same applies for a variation in pilot fuel amount. Thus there is evidence that in lean conditions, pilot injection-related NVO effects are dominated by heat release rather than fuel reformation. © 2009 SAE International.
Resumo:
Ultrasonic solvent extraction combined with solid-phase microextraction (SPME) with calix[4]arene/hydroxy-terminated silicone (C[4]/OHTSO) oil coated fiber was used to extract phthalate acid esters (PAEs) plasticizers in plastic, such as blood bags, transfusion tubing, food packaging bag, and mineral water bottle for analysis by gas chromatography (GC). Both extraction parameters (i.e. extraction time, extraction temperature, ionic strength) and conditions of the thermal desorption in a GC injector were optimized by analysis of eight phthalates. The fiber shows wonderful sensitivity and selectivity to the tested compounds. Owing to its high thermal stability (380 degreesC), the carryover effect that often encountered when using conventional fibers can be reduced by appropriately enhancing the injector temperature. The method showed linear response over two to four orders of magnitude with correlation coefficients (r) better than 0.996, and limits of detection (LOD) ranged between 0.006 and 0.084 mug l(-1). The relative standard deviation values obtained were less than or equal to 10%. bis-2-Ethylhexyl phthalate (DEHP) was the sole analyte detected in these plastics and recoveries were in the ranges 95.5-101.4% in all the samples. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this work, both,solid phase microextraction (SPME) and solid phase extraction(SPE) were used to enrich organochlorine compounds in water samples and analyzed by gas chromatography with electron capture detector. The operating conditions of SPME have been studied and different kinds of solid phase were compared. Linear alkybenzene sulfonate(LAS) was added to the samples to investigate its effect on the analysis. The results indicated that polyacrylate was better than other commercial solid phases in extraction of moderated polar organic compounds and the sensitivity of SPME was higher than SPE. LAS affect much in liquid-liquid extraction and headspace SPME; but it has little effect on SPE and direct-SPME method. The applications showed that SPME was a fast and effective method in sample preparation.
Resumo:
Dichlorosilane, a gas at normal temperature with a boiling point of 8.3 degrees C, is very difficult to sample and detect using conventional methods. We reduced phosphorus in dichlorosilane to PH3 by hydrogen at high temperature, then PH3 was separated from chlorosilanes by NaOH solution and from other hydrides by chromatographic absorption. Thus the problem of interference of chlorosilanes and other hydrides was overcome and PH, was measured by a double flame photometric detector at 526 nm. This method was sensitive, reliable and convenient and the sensitivity reached as low as 0.04 mu g/l.
Resumo:
This article reports an analytical method for separating, identifying and quantitating sulfur-containing compounds and their groups in diesel oils (170-400degreesC) using comprehensive two-dimensional gas chromatography coupled with a sulfur chemiluminescence detector. The identification of target compounds and their groups was based on standard substances, the group separation feature and the-effect of comprehensive two-dimensional gas chromatography. The quantitative analysis on major sulfur compounds and total sulfur was carried out based on the linear response of sulfur chemiluminescence detector and the internal standards method. The results of total sulfur determination in the samples were compared with those from ASTM D 4294 standard method, the R.S.D. percentage were <6.02%, correctness of this method can meet the industrial requirement. To the end, the method developed was used to investigate the sulfur-containing compounds in different diesel oils, the result shows that the distribution of sulfur-containing compounds in diesel oils from different process units are apparently different. The sulfur compounds in fluid catalytic cracking (FCC), residuum fluid catalytic cracking (RFCC) diesel oils mainly exist in the form of alkyl-substituted dibenzothiophenes that add up to about 40-50% of the total sulfur, while this number is only 6-8 and 20-28% in visbreaking (VB) and delayed-coking (DC) diesel oils, respectively. (C) 2003 Elsevier B.V. All rights reserved.