903 resultados para Gas, Natural


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Prepared for American Gas Association conference on select use of gas, July 23 and 24, 1985.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Desde hace cerca de dos siglos, los hidratos de gas han ganado un rol importante en la ingeniería de procesos, debido a su impacto económico y ambiental en la industria -- Cada día, más compañías e ingenieros ganan interés en este tema, a medida que nuevos desafíos muestran a los hidratos de gas como un factor crucial, haciendo su estudio una solución para un futuro próximo -- Los gases de hidrato son estructuras similares al hielo, compuestos de moléculas huéspedes de agua conteniendo compuestos gaseosos -- Existen naturalmente en condiciones de presiones altas y bajas temperaturas, condiciones típicas de algunos procesos químicos y petroquímicos [1] -- Basado en el trabajo doctoral de Windmeier [2] y el trabajo doctoral the Rock [3], la descripción termodinámica de las fases de los hidratos de gas es implementada siguiendo el estado del arte de la ciencia y la tecnología -- Con ayuda del Dortmund Data Bank (DDB) y el paquete de software correspondiente (DDBSP) [26], el desempeño del método fue mejorado y comparado con una gran cantidad de datos publicados alrededor del mundo -- También, la aplicabilidad de la predicción de los hidratos de gas fue estudiada enfocada en la ingeniería de procesos, con un caso de estudio relacionado con la extracción, producción y transporte del gas natural -- Fue determinado que la predicción de los hidratos de gas es crucial en el diseño del proceso del gas natural -- Donde, en las etapas de tratamiento del gas y procesamiento de líquido no se presenta ninguna formación, en la etapa de deshidratación una temperatura mínima de 290.15 K es crítica y para la extracción y transporte el uso de inhibidores es esencial -- Una composición másica de 40% de etilenglicol fue encontrada apropiada para prevenir la formación de hidrato de gas en la extracción y una composición másica de 20% de metanol en el transporte

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A inicios del año 2000 el gobierno peruano llevó a cabo las licitaciones de la exploración del lote 88 y la construcción y operación de la planta Malvinas, que dio lugar al convenio entre la empresa estatal Petroperú SA. y el Consorcio Camisea para la exploración de hidrocarburos. Dicho proyecto requería una infraestructura integral para poder trasladar los hidrocarburos extraídos hacia la costa del país, donde se encontraría la principal demanda del gas natural y líquidos de gas natural. Es en ese contexto que nace Transportadora de Gas del Perú (TgP), compañía concesionaria encargada del transporte de gas natural y líquidos de gas natural desde los yacimientos de Camisea en la selva hasta la costa peruana. Así, en agosto del año 2004 entra en operaciones el proyecto más emblemático y significativo del sector energético en el Perú hasta ese momento, llamado el Proyecto Camisea, el cual viene contribuyendo al desarrollo de la industria del gas natural en el mercado peruano. Recogiendo la importancia de la compañía TgP en la operación y continuidad de este proyecto por el alto impacto que tiene sobre la economía peruana, pues más del 45% de la energía producida en el Perú depende del gas de Camisea, es que el presente documento tiene como propósito estudiar y dar una valoración actual de la compañía. Es así que como herramienta de valoración se empleó la metodología de Flujo de Caja de Descontado, siguiendo una serie de supuestos acordes con la realidad de la empresa, que muestra una valoración de TgP en US$ 3.012 millones, con un valor patrimonial de US$ 2.150 millones, lo cual se encuentra acorde con los últimos registros de transacciones privadas de capital entre los socios de la compañía.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La obtención de corrientes ricas en hidrógeno se presenta como un reto de alto interés industrial ya que constituyen la alimentación de los sistemas de producción energética más prometedores a medio-largo plazo, las pilas de combustible. El avance en la implementación industrial de estos dispositivos está condicionado por la disponibilidad de fuentes de hidrógeno fácilmente disponibles y almacenables. Los combustibles logísticos (gas natural, gasolina y diesel) son recursos todavía abundantes cuya transformación química puede satisfacer esta demanda de hidrógeno. En este Trabajo Fin de Grado se plantea un estudio sobre diferentes estrategias de reformado (oxidación parcial, reformado con vapor de agua o reformado autotérmico) empleando espinelas de aluminato de níquel como catalizadores alternativos a los metales nobles (Rh)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN] This PhD work started in March 2010 with the support of the University of the Basque Country (UPV/EHU) under the program named “Formación de Personal Investigador” at the Chemical and Environmental Engineering Department in the Faculty of Engineering of Bilbao. The major part of the Thesis work was carried out in the mentioned department, as a member of the Sustainable Process Engineering (SuPrEn) research group. In addition, this PhD Thesis includes the research work developed during a period of 6 months at the Institut für Mikrotechnik Mainz GmbH, IMM, in Germany. During the four years of the Thesis, conventional and microreactor systems were tested for several feedstocks renewable and non-renewable, gases and liquids through several reforming processes in order to produce hydrogen. For this purpose, new catalytic formulations which showed high activity, selectivity and stability were design. As a consequence, the PhD work performed allowed the publication of seven scientific articles in peer-reviewed journals. This PhD Thesis is divided into the following six chapters described below. The opportunity of this work is established on the basis of the transition period needed for moving from a petroleum based energy system to a renewable based new one. Consequently, the present global energy scenario was detailed in Chapter 1, and the role of hydrogen as a real alternative in the future energy system was justified based on several outlooks. Therefore, renewable and non-renewable hydrogen production routes were presented, explaining the corresponding benefits and drawbacks. Then, the raw materials used in this Thesis work were described and the most important issues regarding the processes and the characteristics of the catalytic formulations were explained. The introduction chapter finishes by introducing the concepts of decentralized production and process intensification with the use of microreactors. In addition, a small description of these innovative reaction systems and the benefits that entailed their use were also mentioned. In Chapter 2 the main objectives of this Thesis work are summarized. The development of advanced reaction systems for hydrogen rich mixtures production is the main objective. In addition, the use and comparison between two different reaction systems, (fixed bed reactor (FBR) and microreactor), the processing of renewable raw materials, the development of new, active, selective and stable catalytic formulations, and the optimization of the operating conditions were also established as additional partial objectives. Methane and natural gas (NG) steam reforming experimental results obtained when operated with microreactor and FBR systems are presented in Chapter 3. For these experiments nickel-based (Ni/Al2O3 and Ni/MgO) and noble metal-based (Pd/Al2O3 and Pt/Al2O3) catalysts were prepared by wet impregnation and their catalytic activity was measured at several temperatures, from 973 to 1073 K, different S/C ratios, from 1.0 to 2.0, and atmospheric pressure. The Weight Hourly Space Velocity (WHSV) was maintained constant in order to compare the catalytic activity in both reaction systems. The results obtained showed a better performance of the catalysts operating in microreactors. The Ni/MgO catalyst reached the highest hydrogen production yield at 1073 K and steam-to-carbon ratio (S/C) of 1.5 under Steam methane Reforming (SMR) conditions. In addition, this catalyst also showed good activity and stability under NG reforming at S/C=1.0 and 2.0. The Ni/Al2O3 catalyst also showed high activity and good stability and it was the catalyst reaching the highest methane conversion (72.9 %) and H2out/CH4in ratio (2.4) under SMR conditions at 1073 K and S/C=1.0. However, this catalyst suffered from deactivation when it was tested under NG reforming conditions. Regarding the activity measurements carried out with the noble metal-based catalysts in the microreactor systems, they suffered a very quick deactivation, probably because of the effects attributed to carbon deposition, which was detected by Scanning Electron Microscope (SEM). When the FBR was used no catalytic activity was measured with the catalysts under investigation, probably because they were operated at the same WHSV than the microreactors and these WHSVs were too high for FBR system. In Chapter 4 biogas reforming processes were studied. This chapter starts with an introduction explaining the properties of the biogas and the main production routes. Then, the experimental procedure carried out is detailed giving concrete information about the experimental set-up, defining the parameters measured, specifying the characteristics of the reactors used and describing the characterization techniques utilized. Each following section describes the results obtained from activity testing with the different catalysts prepared, which is subsequently summarized: Section 4.3: Biogas reforming processes using γ-Al2O3 based catalysts The activity results obtained by several Ni-based catalysts and a bimetallic Rh-Ni catalyst supported on magnesia or alumina modified with oxides like CeO2 and ZrO2 are presented in this section. In addition, an alumina-based commercial catalyst was tested in order to compare the activity results measured. Four different biogas reforming processes were studied using a FBR: dry reforming (DR), biogas steam reforming (BSR), biogas oxidative reforming (BOR) and tri-reforming (TR). For the BSR process different steam to carbon ratios (S/C) from 1.0 to 3.0, were tested. In the case of BOR process the oxygen-to-methane (O2/CH4) ratio was varied from 0.125 to 0.50. Finally, for TR processes different S/C ratios from 1.0 to 3.0, and O2/CH4 ratios of 0.25 and 0.50 were studied. Then, the catalysts which achieved high activity and stability were impregnated in a microreactor to explore the viability of process intensification. The operation with microreactors was carried out under the best experimental conditions measured in the FBR. In addition, the physicochemical characterization of the fresh and spent catalysts was carried out by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), N2 physisorption, H2 chemisorption, Temperature Programmed Reduction (TPR), SEM, X-ray Photoelectron Spectroscopy (XPS) and X-ray powder Diffraction (XRD). Operating with the FBR, conversions close to the ones predicted by thermodynamic calculations were obtained by most of the catalysts tested. The Rh-Ni/Ce-Al2O3 catalyst obtained the highest hydrogen production yield in DR. In BSR process, the Ni/Ce-Al2O3 catalyst achieved the best activity results operating at S/C=1.0. In the case of BOR process, the Ni/Ce-Zr-Al2O3 catalyst showed the highest reactants conversion values operating at O2/CH4=0.25. Finally, in the TR process the Rh-Ni/Ce-Al2O3 catalyst obtained the best results operating at S/C=1.0 and O2/CH4=0.25. Therefore, these three catalysts were selected to be coated onto microchannels in order to test its performance under BOR and TR processes conditions. Although the operation using microreactors was carried out under considerably higher WHSV, similar conversions and yields as the ones measured in FBR were measured. Furthermore, attending to other measurements like Turnover Frequency (TOF) and Hydrogen Productivity (PROD), the values calculated for the catalysts tested in microreactors were one order of magnitude higher. Thus, due to the low dispersion degree measured by H2-chemisorption, the Ni/Ce-Al2O3 catalyst reached the highest TOF and PROD values. Section 4.4: Biogas reforming processes using Zeolites L based catalysts In this section three type of L zeolites, with different morphology and size, were synthesized and used as catalyst support. Then, for each type of L zeolite three nickel monometallic and their homologous Rh-Ni bimetallic catalysts were prepared by the wetness impregnation method. These catalysts were tested using the FBR under DR process and different conditions of BSR (S/C ratio of 1.0 and 2.0), BOR (O2/CH4 ratio of 0.25 and 0.50) and TR processes (at S/C=1.0 and O2/CH4=0.25). The characterization of these catalysts was also carried out by using the same techniques mentioned in the previous section. Very high methane and carbon dioxide conversion values were measured for almost all the catalysts under investigation. The experimental results evidenced the better catalytic behavior of the bimetallic catalysts as compared to the monometallic ones. Comparing the catalysts behavior with regards to their morphology, for the BSR process the Disc catalysts were the most active ones at the lowest S/C ratio tested. On the contrary, the Cylindrical (30–60 nm) catalysts were more active under BOR conditions at O2/CH4=0.25 and TR processes. By the contrary, the Cylindrical (1–3 µm) catalysts showed the worst activity results for both processes. Section 4.5: Biogas reforming processes using Na+ and Cs+ doped Zeolites LTL based catalysts A method for the synthesis of Linde Type L (LTL) zeolite under microwave-assisted hydrothermal conditions and its behavior as a support for heterogeneously catalyzed hydrogen production is described in this section. Then, rhodium and nickel-based bimetallic catalysts were prepared in order to be tested by DR process and BOR process at O2/CH4=0.25. Moreover, the characterization of the catalysts under investigation was also carried out. Higher activities were achieved by the catalysts prepared from the non-doped zeolites, Rh-Ni/D and Rh-Ni/N, as compared to the ones supported on Na+ and Cs+ exchanged supports. However, the differences between them were not very significant. In addition, the Na+ and Cs+ incorporation affected mainly to the Disc catalysts. Comparing the results obtained by these catalysts with the ones studied in the section 4.4, in general worst results were achieved under DR conditions and almost the same results when operated under BOR conditions. In Chapter 5 the ethylene glycol (EG) as feed for syngas production by steam reforming (SR) and oxidative steam reforming (OSR) was studied by using microchannel reactors. The product composition was determined at a S/C of 4.0, reaction temperatures between 625°C and 725°C, atmospheric pressure and Volume Hourly Space Velocities (VHSV) between 100 and 300 NL/(gcath). This work was divided in two sections. The first one corresponds to the introduction of the main and most promising EG production routes. Then, the new experimental procedure is detailed and the information about the experimental set-up and the measured parameters is described. The characterization was carried out using the same techniques as for the previous chapter. Then, the next sections correspond to the catalytic activity and catalysts characterization results. Section 5.3: xRh-cm and xRh-np catalysts for ethylene glycol reforming Initially, catalysts with different rhodium loading, from 1.0 to 5.0 wt. %, and supported on α-Al2O3 were prepared by two different preparation methods (conventional impregnation and separate nanoparticle synthesis). Then, the catalysts were compared regarding their measured activity and selectivity, as well as the characterization results obtained before and after the activity tests carried out. The samples prepared by a conventional impregnation method showed generally higher activity compared to catalysts prepared from Rh nanoparticles. By-product formation of species such as acetaldehyde, ethane and ethylene was detected, regardless if oxygen was added to the feed or not. Among the catalysts tested, the 2.5Rh-cm catalyst was considered the best one. Section 5.4: 2.5Rh-cm catalyst support modification with CeO2 and La2O3 In this part of the Chapter 5, the catalyst showing the best performance in the previous section, the 2.5Rh-Al2O3 catalyst, was selected in order to be improved. Therefore, new Rh based catalysts were designed using α-Al2O3 and being modified this support with different contents of CeO2 or La2O3 oxides. All the catalysts containing additives showed complete conversion and selectivities close to the equilibrium in both SR and OSR processes. In addition, for these catalysts the concentrations measured for the C2H4, CH4, CH3CHO and C2H6 by-products were very low. Finally, the 2.5Rh-20Ce catalyst was selected according to its catalytic activity and characterization results in order to run a stability test, which lasted more than 115 hours under stable operation. The last chapter, Chapter 6, summarizes the main conclusions achieved throughout this Thesis work. Although very high reactant conversions and rich hydrogen mixtures were obtained using a fixed bed reaction system, the use of microreactors improves the key issues, heat and mass transfer limitations, through which the reforming reactions are intensified. Therefore, they seem to be a very interesting and promising alternative for process intensification and decentralized production for remote application.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[ES]En este documento se lleva a cabo el estudio detallado del funcionamiento de una caldera mural de condensación cuyo combustible es el gas natural. La memoria se centrará exclusivamente en el funcionamiento de la caldera en las diferentes situaciones de trabajo en el que se encuentre. El fin será la obtención de las características básicas de la caldera, estudio básico del funcionamiento y en concreto su rendimiento térmico.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Permian reservoir in Sulige area of Ordos Basin, on which this paper focused, belongs to fluvial-delta lithofacies. The majority formations in this area are complicated channel sand deposit with serious inhomogeneity which makes natural gas exploration be very tough in this area. This inhomogeneity can be found everywhere both in large horizontal area and vertical profile of inner and interbedded formations.This paper studied the inhomogeneity characteristic of Permian formation in sulige area of Ordos Basin according to the logging data.Correlating with core data, a criterion to distinguish different type of reservoirs by using logging data is determined after the study of logging response is done considering the diverse conditions of deposit environments, lithology and reservoir space. The characteristic relationships between the various type formations and logging responses fully and systemically are established.It investigated reservoir parameter calculation methods amply. Combining the conventional and special logging data, basing on the feature of low porosity -permeability formation of sulige area, a set of methods to calculate reservoir parameters was formed including primary porosity, secondary porosity, fracture porosity, permeability and water saturation under the conditions of both low porosity-permeability and inhomogenous reservoirs. One thing should be pay close attention is the parameter M for calculating saturation. It is found that the M in low porosity -permeability formation decreases as the porosity decrease, which is opposite to the law that M increases as the porosity decrease in the formation with intermediate to high porosity and permeability. This view has innovated the traditional theory and offered theory basis for the logging interpretation of low porosity - permeability reservoir. Meanwhile it also improved the Arqi formula theoretically and enhanced the logging interpretation accuracy and rescued a number of formations which has been thought to be hopeless according to the old theory.By using advantage logging interpretation procedure, a territorial synthetic geology evaluation to the inhomogeneous reservoir was completed basing on the single well interpretation. All the reservoir evaluation parameters including sand formation thickness, primary porosity, secondary porosity were calculated and evaluated. The rules of changing and development for sand formation thickness, sand physical properties and secondary porous were found at different formations of upper part of the Member 8 of Shihezi, lower part of the Member 8 of Shihezi, the Member 1 of shanxi and the Member 2 of shanxi individually. Evaluation and Correlation of these five formations were also completed and one conclusion was arrived: upper part of the Member 8 of Shihezi formation has the best performance followed by the lower part of the Member 8 of Shihezi, the Member 1 of shanxi and the Member 2 of shanxi formation.After studied the relationship between reservoir deposition characteristic and the natural gas richness, it is regarded that reservoir inhomogeneity is the key issue of the impaction on the natural gas. Natural gas in Sulige gas field was mainly accumulated in sands of channel bar, distributary channel and debouchure bar. Especially, the quartz sand with rich of secondary porous space has obvious better physical properties than other reservoir and usually can forms the concentration of natural gas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabajo revisa la evolución y estado actual de la automoción eléctrica; analiza las ventajas ambientales, de eficiencia energética y de costes del motor eléctrico frente al de combustión interna; y presenta como limitaciones para el uso del vehículo eléctrico, el desarrollo actual de las baterías recargables y la lenta implantación de electrolineras. Con el objetivo de contribuir al desarrollo de una actividad económica respetuosa con el medio ambiente y basada en nuevas tecnologías, se proyecta, a partir de experiencias previas, una instalación de puntos de recarga para una ciudad de 50.000 habitantes con un parque de 100 vehículos eléctricos que dispone de dos plazas de recarga rápida (poste trifásico 400V CA), siete plazas de recarga lenta (postes monofásicos 230V CA) y de 50 módulos fotovoltaicos que producen diariamente la energía equivalente a la recarga lenta de un vehículo en los meses fríos y de dos en los meses cálidos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tesis (Maestro en Ciencias de la Administración con Especialidad en Finanzas) - U.A.N.L, 2004