296 resultados para Gabor Tompa
Resumo:
<正> 一、前言 在电子计算机十分发达的今天,流体测量技术仍然是流体力学发展最基本、最活跃的因素。流场显示中的全息照相方法是流体测量技术中较新和发展非常快的方法之一。 全息照相概念于1948年由英国D.Gabor提出,并由很困难的实验所证明。由于技术上的困难,这个课题停顿了十多年,未引起人们的注意。1962年美国
Resumo:
By integrating Galerucella calmariensis with glyphosate there is potential to achieve both immediate and sustained control of purple loosestrife (Lythrum salicaria). The objective of this study was to determine the compatibility of glyphosate on the oviposition and survival of adult G. Calmariensis and on the ability of G. calmariensis third instar larvae to pupate to teneral adults. Our results revealed glyphosate (formulated as Roundup) at a concentration of 2% (2.43L/acre) and 4% solution (4.86 L/acre) had no impact on the ability of G. calmariensis third instar larvae to pupate to new generation adults. To examine the effect of a 2% solution of glyphosate on adult G. calmariensis oviposition and survival, adults were randomly divided between a direct contact group (adults sprayed directly), an indirect contact group (host plants with adults were sprayed), and a control group. Our results revealed that glyphosate does not impact G. calmariensis oviposition or adult survival. The results of this study indicate that G. calmariensis is compatible with glyphosate indicating that further field studies examining integrated control strategies for purple loosestrife are warranted.
Resumo:
In this paper, a novel cortex-inspired feed-forward hierarchical object recognition system based on complex wavelets is proposed and tested. Complex wavelets contain three key properties for object representation: shift invariance, which enables the extraction of stable local features; good directional selectivity, which simplifies the determination of image orientations; and limited redundancy, which allows for efficient signal analysis using the multi-resolution decomposition offered by complex wavelets. In this paper, we propose a complete cortex-inspired object recognition system based on complex wavelets. We find that the implementation of the HMAX model for object recognition in [1, 2] is rather over-complete and includes too much redundant information and processing. We have optimized the structure of the model to make it more efficient. Specifically, we have used the Caltech 5 standard dataset to compare with Serre's model in [2] (which employs Gabor filter bands). Results demonstrate that the complex wavelet model achieves a speed improvement of about 4 times over the Serre model and gives comparable recognition performance. © 2011 IEEE.
Resumo:
With the digital all-sky imager (ASI) emergence in aurora research, millions of images are captured annually. However, only a fraction of which can be actually used. To address the problem incurred by low efficient manual processing, an integrated image analysis and retrieval system is developed. For precisely representing aurora image, macroscopic and microscopic features are combined to describe aurora texture. To reduce the feature dimensionality of the huge dataset, a modified local binary pattern (LBP) called ALBP is proposed to depict the microscopic texture, and scale-invariant Gabor and orientation-invariant Gabor are employed to extract the macroscopic texture. A physical property of aurora is inducted as region features to bridge the gap between the low-level visual features and high-level semantic description. The experiments results demonstrate that the ALBP method achieves high classification rate and low computational complexity. The retrieval simulation results show that the developed retrieval system is efficient for huge dataset. (c) 2010 Elsevier Inc. All rights reserved.
Resumo:
This paper presents a new region-based unified tensor level set model for image segmentation. This model introduces a three-order tensor to comprehensively depict features of pixels, e.g., gray value and the local geometrical features, such as orientation and gradient, and then, by defining a weighted distance, we generalized the representative region-based level set method from scalar to tensor. The proposed model has four main advantages compared with the traditional representative method as follows. First, involving the Gaussian filter bank, the model is robust against noise, particularly the salt-and pepper-type noise. Second, considering the local geometrical features, e. g., orientation and gradient, the model pays more attention to boundaries and makes the evolving curve stop more easily at the boundary location. Third, due to the unified tensor pixel representation representing the pixels, the model segments images more accurately and naturally. Fourth, based on a weighted distance definition, the model possesses the capacity to cope with data varying from scalar to vector, then to high-order tensor. We apply the proposed method to synthetic, medical, and natural images, and the result suggests that the proposed method is superior to the available representative region-based level set method.
Resumo:
实时目标跟踪是模式识别、图像处理、计算机视觉、武器制导等领域的重要课题,而且在工业、军事和科学研究方面都具有广泛的应用。相关跟踪是目前使用最广泛的跟踪算法。但传统相关跟踪方法以假设目标仅发生平移运动为前提,当目标仅发生平移时能够获得理想的跟踪效果。但当目标尺度和灰度变化时,这种算法往往表现出一定的不适应性。 差值分解(Difference Decomposition)最早于1997年Michael Gleicher提出,并被应用于目标跟踪,图像配准等领域。由于具有计算速度快,对目标变化适应性好等特点,被认为是目标跟踪中的一种有效的方法。本文在跟踪算法中引入了这种方法,力图解决传统相关跟踪所出现的上述问题。在研究差值分解(Difference Decomposition)理论的同时,对使用该方法在实际应用中遇到的问题进行了深入的分析和大量的实验。主要包括:算法应用中一些参数的选择对算法的影响,算法迭代中参数更新的方法等。并在应用中发现了算法的不足之处,提出了相应的改进方法。 同时,介绍了TI DM642硬件处理平台的基本构成和性能指标。作为正常算法分析的重要组成部分,对差值分解算法在该硬件处理平台上通过软件编程方式实现的复杂度进行了详细的分析与论证。 最后本文构建了一个比较完整的跟踪流程,将改进后的跟踪算法应用到所建立的跟踪流程中。采用工具对算法进行了开发,并使用序列图像对算法进行了跟踪仿真实验,为算法将来的实际应用奠定了良好的基础。
Resumo:
本论文研究的主要内容为基于小波多尺度特性的序列图像目标跟踪技术。目标跟踪作为一个在军事、工业和科学研究方面有着广泛应用背景的研究领域,一直以来吸引了大批国内外学者。由于小波变换具有多分辨率分析的特点,而且在时频两域都具有表征信号局部特征的能力,使得基于小波变换的目标跟踪算法具有传统算法无法比拟的优势。针对目标跟踪技术的研究现状和存在问题,本文着重从目标分割和特征检测与匹配两个角度对基于小波变换的几种新的目标跟踪方法进行了研究。 1. 采用基于多尺度Gabor小波的特征点检测算法对序列图像进行跟踪。借助图像的金字塔变换得到多尺度的Gabor小波特征图像,并对特征图像进行特征点检测,提取对图像变换具有鲁棒性的特征。针对两种特征检测方案,提出不同的特征匹配准则,按照分层匹配的策略由粗到精逐步定位目标的准确位置,具有较快的搜索速度。 2. 采用多尺度小波函数所提取的相位一致性特征进行基于目标分割和基于角点特征的跟踪。 对目标图像进行相位一致性检测,得到一个具有光照不变性的无量纲特征量—相位一致系数。利用相位一致性检测的这种特性,针对孤立目标的情况,提出了两种自适应目标分割和跟踪的算法。基于区域增长的目标分割算法利用从相位一致图像中找到的对比度最大点及其法线方向两边的灰度分布确定目标和背景的种子像素,进行自适应目标分割。基于相位一致性检测的目标分割算法只需确定一个阈值即可利用相位一致特征图像的方向性,依据目标在不同方向响应的不同将目标和背景区分开,适应于复杂纹理背景中的目标分割。最后,分别将两种算法所得的分割结果向水平和垂直方向投影即可确定各自的质心位置,实现自适应的质心跟踪。 进一步提取相位一致性图像的最小矩特征就能得到目标的角点信息。文中用实验验证了此方法检测到角点的综合性能。在此基础上,提出了利用单演相位差进行角点匹配跟踪的算法,并将其同基于灰度相关的匹配算法进行了对比,证明了本算法能够检测出更多准确匹配的角点、减少误匹配,同时具有较小的匹配运算量。 对以上提出的几种目标跟踪算法进行了大量的仿真实验,实验结果表明,这几种方法均取得了较好的跟踪效果,能够实现稳定、精确的跟踪。
Resumo:
Seismic signal is a typical non-stationary signal, whose frequency is continuously changing with time and is determined by the bandwidth of seismic source and the absorption characteristic of the media underground. The most interesting target of seismic signal’s processing and explaining is to know about the local frequency’s abrupt changing with the time, since this kind of abrupt changing is indicating the changing of the physical attributes of the media underground. As to the seismic signal’s instantaneous attributes taken from time-frequency domain, the key target is to search a effective, non-negative and fast algorithm time-frequency distribution, and transform the seismic signal into this time-frequency domain to get its instantaneous power spectrum density, and then use the process of weighted adding and average etc. to get the instantaneous attributes of seismic signal. Time-frequency analysis as a powerful tool to deal with time variant non-stationary signal is becoming a hot researching spot of modern signal processing, and also is an important method to make seismic signal’s attributes analysis. This kind of method provides joint distribution message about time domain and frequency domain, and it clearly plots the correlation of signal’s frequency changing with the time. The spectrum decomposition technique makes seismic signal’s resolving rate reach its theoretical level, and by the method of all frequency scanning and imaging the three dimensional seismic data in frequency domain, it improves and promotes the resolving abilities of seismic signal vs. geological abnormal objects. Matching pursuits method is an important way to realize signal’s self-adaptive decomposition. Its main thought is that any signal can be expressed by a series of time-frequency atoms’ linear composition. By decomposition the signal within an over completed library, the time-frequency atoms which stand for the signal itself are selected neatly and self-adaptively according to the signal’s characteristics. This method has excellent sparse decomposition characteristics, and is widely used in signal de-noising, signal coding and pattern recognizing processing and is also adaptive to seismic signal’s decomposition and attributes analysis. This paper takes matching pursuits method as the key research object. As introducing the principle and implementation techniques of matching pursuits method systematically, it researches deeply the pivotal problems of atom type’s selection, the atom dictionary’s discrete, and the most matching atom’s searching algorithm, and at the same time, applying this matching pursuits method into seismic signal’s processing by picking-up correlative instantaneous messages from time-frequency analysis and spectrum decomposition to the seismic signal. Based on the research of the theory and its correlative model examination of the adaptively signal decomposition with matching pursuit method, this paper proposes a fast optimal matching time-frequency atom’s searching algorithm aimed at seismic signal’s decomposition by frequency-dominated pursuit method and this makes the MP method pertinence to seismic signal’s processing. Upon the research of optimal Gabor atom’s fast searching and matching algorithm, this paper proposes global optimal searching method using Simulated Annealing Algorithm, Genetic Algorithm and composed Simulated Annealing and Genetic Algorithm, so as to provide another way to implement fast matching pursuit method. At the same time, aimed at the characteristics of seismic signal, this paper proposes a fast matching atom’s searching algorithm by means of designating the max energy points of complex seismic signal, searching for the most optimal atom in the neighbor area of these points according to its instantaneous frequency and instantaneous phase, and this promotes the calculating efficiency of seismic signal’s matching pursuit algorithm. According to these methods proposed above, this paper implements them by programmed calculation, compares them with some open algorithm and proves this paper’s conclusions. It also testifies the active results of various methods by the processing of actual signals. The problems need to be solved further and the aftertime researching targets are as follows: continuously seeking for more efficient fast matching pursuit algorithm and expanding its application range, and also study the actual usage of matching pursuit method.
Resumo:
How does the laminar organization of cortical circuitry in areas VI and V2 give rise to 3D percepts of stratification, transparency, and neon color spreading in response to 2D pictures and 3D scenes? Psychophysical experiments have shown that such 3D percepts are sensitive to whether contiguous image regions have the same relative contrast polarity (dark-light or lightdark), yet long-range perceptual grouping is known to pool over opposite contrast polarities. The ocularity of contiguous regions is also critical for neon color spreading: Having different ocularity despite the contrast relationship that favors neon spreading blocks the spread. In addition, half visible points in a stereogram can induce near-depth transparency if the contrast relationship favors transparency in the half visible areas. It thus seems critical to have the whole contrast relationship in a monocular configuration, since splitting it between two stereogram images cancels the effect. What adaptive functions of perceptual grouping enable it to both preserve sensitivity to monocular contrast and also to pool over opposite contrasts? Aspects of cortical development, grouping, attention, perceptual learning, stereopsis and 3D planar surface perception have previously been analyzed using a 3D LAMINART model of cortical areas VI, V2, and V4. The present work consistently extends this model to show how like-polarity competition between VI simple cells in layer 4 may be combined with other LAMINART grouping mechanisms, such as cooperative pooling of opposite polarities at layer 2/3 complex cells. The model also explains how the Metelli Rules can lead to transparent percepts, how bistable transparency percepts can arise in which either surface can be perceived as transparent, and how such a transparency reversal can be facilitated by an attention shift. The like-polarity inhibition prediction is consistent with lateral masking experiments in which two f1anking Gabor patches with the same contrast polarity as the target increase the target detection threshold when they approach the target. It is also consistent with LAMINART simulations of cortical development. Other model explanations and testable predictions will also be presented.
Resumo:
We describe an active millimeter-wave holographic imaging system that uses compressive measurements for three-dimensional (3D) tomographic object estimation. Our system records a two-dimensional (2D) digitized Gabor hologram by translating a single pixel incoherent receiver. Two approaches for compressive measurement are undertaken: nonlinear inversion of a 2D Gabor hologram for 3D object estimation and nonlinear inversion of a randomly subsampled Gabor hologram for 3D object estimation. The object estimation algorithm minimizes a convex quadratic problem using total variation (TV) regularization for 3D object estimation. We compare object reconstructions using linear backpropagation and TV minimization, and we present simulated and experimental reconstructions from both compressive measurement strategies. In contrast with backpropagation, which estimates the 3D electromagnetic field, TV minimization estimates the 3D object that produces the field. Despite undersampling, range resolution is consistent with the extent of the 3D object band volume.
Resumo:
A nested heuristic approach that uses route length approximation is proposed to solve the location-routing problem. A new estimation formula for route length approximation is also developed. The heuristic is evaluated empirically against the sequential method and a recently developed nested method for location routing problems. This testing is carried out on a set of problems of 400 customers and around 15 to 25 depots with good results.