986 resultados para GROWTH TEMPERATURE
Resumo:
This study reports on the effects of growth temperature on the secretion and some properties of the xylanase and beta-xylosidase activities produced by a thermotolerant Aspergillus phoenicis. Marked differences were observed when the organism was grown on xylan-supplemented medium at 25 degreesC or 42 degreesC. Production of xylanolytic enzymes reached maximum levels after 72 h of growth at 42 degreesC; and levels were three- to five-fold higher than at 25 degreesC. Secretion of xylanase and beta-xylosidase was also strongly stimulated at the higher temperature. The optimal temperature was 85 degreesC for extracellular and 90 degreesC for intracellular beta-xylosidase activity, independent of the growth temperature. The optimum temperature for extracellular xylanase increased from 50 degreesC to 55 degreesC when the fungus was cultivated at 42 degreesC. At the higher temperature, the xylanolytic enzymes produced by A. phoenicis showed increased thermo stability, with changes in the profiles of pH optima. The chromatographic profiles were distinct when samples obtained from cultures grown at different temperatures were eluted from DEAE-cellulose and Biogel P-60 columns.
Resumo:
Adaptation and acclimation to different temperatures of obligate psychrophilic, facultative psychrophilic and mesophilic yeasts. Production of ω-3 and ω-6 polyunsaturated fatty acids by fermentative way. Obligate psychrophilic, facultative psychrophilic and mesophilic yeasts were cultured in a carbon rich medium at different temperatures to investigate if growth parameters, lipid accumulation and fatty acid composition were adaptive and/or acclimatory responses. Acclimation of facultative psychrophiles and mesophiles to lower temperature negatively affected their specific growth rate. Obligate psychrophiles exhibited the highest biomass yield (YX/S), followed by facultative psychrophiles, then by mesophiles. The growth temperature did not influence the YX/S of facultative psychrophiles and mesophiles. Acclimation to lower temperature caused the increase in lipid yield (YL/X) in mesophilic yeasts, but did not affect YL/X in facultative psychrophiles. Similar YL/X were found in both facultative and obligated psychrophiles, suggesting that lipid accumulation is not a distinctive character of adaptation to permanently cold environments. The extent of unsaturation of fatty acids was one major adaptive feature of the yeasts which colonize permanently cold ecosystems. Remarkable amounts of α-linolenic acid were found in obligate psychrophiles at the expenses of linoleic acid, whereas it was generally scarce or absent in all the others strains. Increased unsaturation of fatty acids was also an acclimatory response of mesophiles and facultative psychrophiles to lower temperature. It’s well known that omega-3 polyunsaturated fatty acids (PUFAs) display a variety of beneficial effects on various organ systems and diseases, therefore a process for the microbial production of omega-3 PUFAs would be of great interest. This work sought also to investigate if one of the better psychrophilic yeast, Rhodotorula glacialis DBVPG 4785, stimulated by acclamatory responses, produced omega-3 PUFAs. In fact, the adaptation of psychrophilic yeasts to cold niches is related to the production of higher amounts of lipids and to increased unsaturation degree of fatty acids, presumably to maintain membrane fluidity and functionality at low temperatures. Bioreactor fermentations of Rhodotorula glacialis DBVPG 4785 were carried out at 25, 20, 15, 10, 5, 0, and -3°C in a complex medium with high C:N ratio for 15 days. High biomass production was attained at all the temperatures with a similar biomass/glucose yield (YXS), between 0.40 and 0.45, but the specific growth rate of the strain decreased as the temperature diminished. The coefficients YL/X have been measured between a minimum of 0.50 to a maximum of 0.67, but it was not possible to show a clear effect of temperature. Similarly, the coefficient YL/S ranges from a minimum of 0.22 to a maximum of 0.28: again, it does not appear to be any significant changes due to temperature. Among omega-3 PUFAs, only α-linolenic acid (ALA, 18:3n-3) was found at temperatures below to 0°C, while, it’s remarkable, that the worthy arachidonic acid (C20:4,n-6), stearidonic acid (C20:4,n-3) C22:0 and docosahexaenoic acid (C22:6n-3) were produced only at the late exponential phase and the stationary phase of batch fermentations at 0 and -3°C. The docosahexaenoic acid (DHA) is a beneficial omega-3 PUFA that is usually found in fatty fish and fish oils. The results herein reported improve the knowledge about the responses which enable psychrophilic yeasts to cope with cold and may support exploitation of these strains as a new resource for biotechnological applications.
Resumo:
Determining the formation temperature of minerals using fluid inclusions is a crucial step in understanding rock-forming scenarios. Unfortunately, fluid inclusions in minerals formed at low temperature, such as gypsum, are commonly in a metastable monophase liquid state. To overcome this problem, ultra-short laser pulses can be used to induce vapor bubble nucleation, thus creating a stable two-phase fluid inclusion appropriate for subsequent measurements of the liquid-vapor homogenization temperature, T-h. In this study we evaluate the applicability of T-h data to accurately determine gypsum formation temperatures. We used fluid inclusions in synthetic gypsum crystals grown in the laboratory at different temperatures between 40 degrees C and 80 degrees C under atmospheric pressure conditions. We found an asymmetric distribution of the T-h values, which are systematically lower than the actual crystal growth temperatures, T-g; this is due to (1) the effect of surface tension on liquid-vapor homogenization, and (2) plastic deformation of the inclusion walls due to internal tensile stress occurring in the metastable state of the inclusions. Based on this understanding, we have determined growth temperatures of natural giant gypsum crystals from Naica (Mexico), yielding 47 +/- 1.5 degrees C for crystals grown in the Cave of Swords (120 m below surface) and 54.5 +/- 2 degrees C for giant crystals grown in the Cave of Crystals (290 m below surface). These results support the earlier hypothesis that the population and the size of the Naica crystals were controlled by temperature. In addition, this experimental method opens a door to determining the growth temperature of minerals forming in low-temperature environments.
Resumo:
Successful application of the alkenone palaeothermometer, the UK'37 index, relies upon the assumption that fossil alkenone synthesisers responded to growth-temperature changes in a similar manner to the modern producers, chiefly the coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica. We compare coccolith and UK'37 data from ODP Site 1087 in the south-east Atlantic between 1500 and 500 ka, and show that evolutionary events and changes in species dominance within the coccolithophore populations had little impact on the UK'37 record. The relative abundances of the C37 and C38 alkenones also closely resembled those found in modern populations, and suggest a similar temperature sensitivity of UK'37 during the early and mid-Pleistocene to that found at present. These results support the application of the UK'37 index to reconstruct sea-surface temperatures (SSTs) throughout the Quaternary. The UK'37 record at ODP Site 1087 contains an SST signal that documents the emergence of the 100-kyr cycles that characterise the late Quaternary ice volume records. This is preceded by significant cooling at ODP Site 1087, marked by a negative shift in SSTs and a positive shift in the planktonic delta18O some 250-kyr earlier, at ca 1150-1000 ka. This results in a permanent fall in average SSTs of around 1.5 °C. The predicted increase in aridity onshore as a result of this cooling can be identified in a number of published records from southern Africa, and may have played a role in some important evolutionary events of the mid-Pleistocene.
Resumo:
The shells of marine mollusks are widely used archives of past climate and ocean chemistry. Whilst the measurement of mollusk delta 18O to develop records of past climate change is a commonly used approach, it has proven challenging to develop reliable independent paleothermometers that can be used to deconvolve the contributions of temperature and fluid composition on molluscan oxygen isotope compositions. Here we investigate the temperature dependence of 13C-18O bond abundance, denoted by the measured parameter Delta 47, in shell carbonates of bivalve mollusks and assess its potential to be a useful paleothermometer. We report measurements on cultured specimens spanning a range in water temperatures of 5 to 25 °C, and field collected specimens spanning a range of -1 to 29 °C. In addition we investigate the potential influence of carbonate saturation state on bivalve stable isotope compositions by making measurements on both calcitic and aragonitic specimens that have been cultured in seawater that is either supersaturated or undersaturated with respect to aragonite. We find a robust relationship between Delta 47 and growth temperature. We also find that the slope of a linear regression through all the Delta 47 data for bivalves plotted against seawater temperature is significantly shallower than previously published inorganic and biogenic carbonate calibration studies produced in our laboratory and go on to discuss the possible sources of this difference. We find that changing seawater saturation state does not have significant effect on the Delta 47 of bivalve shell carbonate in two taxa that we examined, and we do not observe significant differences between Delta 47-temperature relationships between calcitic and aragonitic taxa.
Resumo:
The global warming debate has sparked an unprecedented interest in temperature effects on coccolithophores. The calcification response to temperature changes reported in the literature, however, is ambiguous. The two main sources of this ambiguity are putatively differences in experimental setup and strain-specificity. In this study we therefore compare three strains isolated in the North Pacific under identical experimental conditions. Three strains of Emiliania huxleyi type A were grown under non-limiting nutrient and light conditions, at 10, 15, 20 and 25 ºC. All three strains displayed similar growth rate versus temperature relationships, with an optimum at 20-25 ºC. Elemental production (particulate inorganic carbon (PIC), particulate organic carbon (POC), total particulate nitrogen (TPN)), coccolith mass, coccolith size, and width of the tube elements cycle were positively correlated with temperature over the sub-optimum to optimum temperature range. The correlation between PIC production and coccolith mass/size supports the notion that coccolith mass can be used as a proxy for PIC production in sediment samples. Increasing PIC production was significantly positively correlated with the percentage of incomplete coccoliths in one strain only. Generally, coccoliths were heavier when PIC production was higher. This shows that incompleteness of coccoliths is not due to time shortage at high PIC production. Sub-optimal growth temperatures lead to an increase in the percentage of malformed coccoliths in a strain-specific fashion. Since in total only six strains have been tested thus far, it is presently difficult to say whether sub-optimal temperature is an important factor causing malformations in the field. The most important parameter in biogeochemical terms, the PIC:POC, shows a minimum at optimum growth temperature in all investigated strains. This clarifies the ambiguous picture featuring in the literature, i.e. discrepancies between PIC:POC-temperature relationships reported in different studies using different strains and different experimental setups. In summary, global warming might cause a decline in coccolithophore's PIC contribution to the rain ratio, as well as improved fitness in some genotypes due to less coccolith malformations.
Resumo:
The impact of simultaneous environmental stresses on plants and how they respond to combined stresses compared with single stresses is largely unclear. By using a transgene (RD29A-LUC) consisting of the firefly luciferase coding sequence (LUC) driven by the stress-responsive RD29A promoter, we investigated the interactive effects of temperature, osmotic stress, and the phytohormone abscisic acid (ABA) in the regulation of gene expression in Arabidopsis seedlings. Results indicated that both positive and negative interactions exist among the studied stress factors in regulating gene expression. At a normal growth temperature (22°C), osmotic stress and ABA act synergistically to induce the transgene expression. Low temperature inhibits the response to osmotic stress or to combined treatment of osmotic stress and ABA, whereas low temperature and ABA treatments are additive in inducing transgene expression. Although high temperature alone does not activate the transgene, it significantly amplifies the effects of ABA and osmotic stress. The effect of multiple stresses in the regulation of RD29A-LUC expression in signal transduction mutants was also studied. The results are discussed in the context of cold and osmotic stress signal transduction pathways.
Resumo:
The following investigation characterises the interaction between temperature and growth in psychrophilic, mesophilic and thermophilic fungi in order to gain further insight into the physiological mechanisms underlying fungal growth at extreme temperatures. In the first part of the investigation, the effect of environmental temperature on the growth of vegetative mycelium and sporangiospore production and germination was considered in order to determine the cardinal temperatures of these activities in different thermal groups. Subsequent investigations of plasma membrane permeability suggested that plasma membrane structure and function may be significant in establishing both the upper and lower growth temperature limits characteristic of psychrophiles, mesophiles and thermophiles. Analysis of the plasma membrane fractions revealed significant differences in membrane phospholipid composition between these thermal groups and it is suggested that the differing cardinal growth temperatures characteristic of psychrophilic, mesophilic and thermophilic fungi reflect the temperature ranges over which these organisms exhibit levels of plasma membrane fluidity sufficient to maintain membrane-associated growth processes. In contrast, the membrane protein components appear uniform in both character and thermostability and are therefore unlikely to contribute to this phenomenon.
Resumo:
The study of III-nitride materials (InN, GaN and AlN) gained huge research momentum after breakthroughs in the production light emitting diodes (LEDs) and laser diodes (LDs) over the past two decades. Last year, the Nobel Prize in Physics was awarded jointly to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura for inventing a new energy efficient and environmental friendly light source: blue light-emitting diode (LED) from III-nitride semiconductors in the early 1990s. Nowadays, III-nitride materials not only play an increasingly important role in the lighting technology, but also become prospective candidates in other areas, for example, the high frequency (RF) high electron mobility transistor (HEMT) and photovoltaics. These devices require the growth of high quality III-nitride films, which can be prepared using metal organic vapour phase epitaxy (MOVPE). The main aim of my thesis is to study and develop the growth of III-nitride films, including AlN, u-AlGaN, Si-doped AlGaN, and InAlN, serving as sample wafers for fabrication of ultraviolet (UV) LEDs, in order to replace the conventional bulky, expensive and environmentally harmful mercury lamp as new UV light sources. For application to UV LEDs, reducing the threading dislocation density (TDD) in AlN epilayers on sapphire substrates is a key parameter for achieving high-efficiency AlGaNbased UV emitters. In Chapter 4, after careful and systematic optimisation, a working set of conditions, the screw and edge type dislocation density in the AlN were reduced to around 2.2×108 cm-2 and 1.3×109 cm-2 , respectively, using an optimized three-step process, as estimated by TEM. An atomically smooth surface with an RMS roughness of around 0.3 nm achieved over 5×5 µm 2 AFM scale. Furthermore, the motion of the steps in a one dimension model has been proposed to describe surface morphology evolution, especially the step bunching feature found under non-optimal conditions. In Chapter 5, control of alloy composition and the maintenance of compositional uniformity across a growing epilayer surface were demonstrated for the development of u-AlGaN epilayers. Optimized conditions (i.e. a high growth temperature of 1245 °C) produced uniform and smooth film with a low RMS roughness of around 2 nm achieved in 20×20 µm 2 AFM scan. The dopant that is most commonly used to obtain n-type conductivity in AlxGa1-xN is Si. However, the incorporation of Si has been found to increase the strain relaxation and promote unintentional incorporation of other impurities (O and C) during Si-doped AlGaN growth. In Chapter 6, reducing edge-type TDs is observed to be an effective appoach to improve the electric and optical properties of Si-doped AlGaN epilayers. In addition, the maximum electron concentration of 1.3×1019 cm-3 and 6.4×1018 cm-3 were achieved in Si-doped Al0.48Ga0.52N and Al0.6Ga0.4N epilayers as measured using Hall effect. Finally, in Chapter 7, studies on the growth of InAlN/AlGaN multiple quantum well (MQW) structures were performed, and exposing InAlN QW to a higher temperature during the ramp to the growth temperature of AlGaN barrier (around 1100 °C) will suffer a significant indium (In) desorption. To overcome this issue, quasi-two-tempeature (Q2T) technique was applied to protect InAlN QW. After optimization, an intense UV emission from MQWs has been observed in the UV spectral range from 320 to 350 nm measured by room temperature photoluminescence.
Resumo:
The global warming debate has sparked an unprecedented interest in temperature effects on coccolithophores. The calcification response to temperature changes reported in the literature, however, is ambiguous. The two main sources of this ambiguity are putatively differences in experimental setup and strain specificity. In this study we therefore compare three strains isolated in the North Pacific under identical experimental conditions. Three strains of Emiliania huxleyi type A were grown under non-limiting nutrient and light conditions, at 10, 15, 20 and 25 °C. All three strains displayed similar growth rate versus temperature relationships, with an optimum at 20–25 °C. Elemental production (particulate inorganic carbon (PIC), particulate organic carbon (POC), total particulate nitrogen (TPN)), coccolith mass, coccolith size, and width of the tube element cycle were positively correlated with temperature over the sub-optimum to optimum temperature range. The correlation between PIC production and coccolith mass/size supports the notion that coccolith mass can be used as a proxy for PIC production in sediment samples. Increasing PIC production was significantly positively correlated with the percentage of incomplete coccoliths in one strain only. Generally, coccoliths were heavier when PIC production was higher. This shows that incompleteness of coccoliths is not due to time shortage at high PIC production. Sub-optimal growth temperatures lead to an increase in the percentage of malformed coccoliths in a strain-specific fashion. Since in total only six strains have been tested thus far, it is presently difficult to say whether sub-optimal temperature is an important factor causing malformations in the field. The most important parameter in biogeochemical terms, the PIC : POC ratio, shows a minimum at optimum growth temperature in all investigated strains. This clarifies the ambiguous picture featuring in the literature, i.e. discrepancies between PIC : POC–temperature relationships reported in different studies using different strains and different experimental setups. In summary, global warming might cause a decline in coccolithophore's PIC contribution to the rain ratio, as well as improved fitness in some genotypes due to fewer coccolith malformations.
Resumo:
The global warming debate has sparked an unprecedented interest in temperature effects on coccolithophores. The calcification response to temperature changes reported in the literature, however, is ambiguous. The two main sources of this ambiguity are putatively differences in experimental setup and strain specificity. In this study we therefore compare three strains isolated in the North Pacific under identical experimental conditions. Three strains of Emiliania huxleyi type A were grown under non-limiting nutrient and light conditions, at 10, 15, 20 and 25 °C. All three strains displayed similar growth rate versus temperature relationships, with an optimum at 20–25 °C. Elemental production (particulate inorganic carbon (PIC), particulate organic carbon (POC), total particulate nitrogen (TPN)), coccolith mass, coccolith size, and width of the tube element cycle were positively correlated with temperature over the sub-optimum to optimum temperature range. The correlation between PIC production and coccolith mass/size supports the notion that coccolith mass can be used as a proxy for PIC production in sediment samples. Increasing PIC production was significantly positively correlated with the percentage of incomplete coccoliths in one strain only. Generally, coccoliths were heavier when PIC production was higher. This shows that incompleteness of coccoliths is not due to time shortage at high PIC production. Sub-optimal growth temperatures lead to an increase in the percentage of malformed coccoliths in a strain-specific fashion. Since in total only six strains have been tested thus far, it is presently difficult to say whether sub-optimal temperature is an important factor causing malformations in the field. The most important parameter in biogeochemical terms, the PIC : POC ratio, shows a minimum at optimum growth temperature in all investigated strains. This clarifies the ambiguous picture featuring in the literature, i.e. discrepancies between PIC : POC–temperature relationships reported in different studies using different strains and different experimental setups. In summary, global warming might cause a decline in coccolithophore's PIC contribution to the rain ratio, as well as improved fitness in some genotypes due to fewer coccolith malformations.
Resumo:
The semiconductor nanowire has been widely studied over the past decade and identified as a promising nanotechnology building block with application in photonics and electronics. The flexible bottom-up approach to nanowire growth allows for straightforward fabrication of complex 1D nanostructures with interesting optical, electrical, and mechanical properties. III-V nanowires in particular are useful because of their direct bandgap, high carrier mobility, and ability to form heterojunctions and have been used to make devices such as light-emitting diodes, lasers, and field-effect transistors. However, crystal defects are widely reported for III-V nanowires when grown in the common out-of-plane <111>B direction. Furthermore, commercialization of nanowires has been limited by the difficulty of assembling nanowires with predetermined position and alignment on a wafer-scale. In this thesis, planar III-V nanowires are introduced as a low-defect and integratable nanotechnology building block grown with metalorganic chemical vapor deposition. Planar GaAs nanowires grown with gold seed particles self-align along the <110> direction on the (001) GaAs substrate. Transmission electron microscopy reveals that planar GaAs nanowires are nearly free of crystal defects and grow laterally and epitaxially on the substrate surface. The nanowire morphology is shown to be primarily controlled through growth temperature and an ideal growth window of 470 +\- 10 °C is identified for planar GaAs nanowires. Extension of the planar growth mode to other materials is demonstrated through growth of planar InAs nanowires. Using a sacrificial layer, the transfer of planar GaAs nanowires onto silicon substrates with control over the alignment and position is presented. A metal-semiconductor field-effect transistor fabricated with a planar GaAs nanowire shows bulk-like low-field electron transport characteristics with high mobility. The aligned planar geometry and excellent material quality of planar III-V nanowires may lead to highly integrated III-V nanophotonics and nanoelectronics.
Resumo:
Realizou-se um trabalho experimental com o objectivo de obter informação sobre a evolução do crescimento de Staphylococcus aureus. Foram utilizadas duas estirpes de Staphylococcus aureus, uma isolada a partir de rissóis de frango e uma estirpe de referência, a ATCC n. 9213, estas estirpes foram sujeitas a 3 valores de pH diferentes (que representam os valores de pH que é possível, ou seja pH 4, 5,5 e 7, a 3 valores de concentração de NaCl, nomeadamente, 0,5%, 7% e 15%. A temperatura de desenvolvimento será de 7°C, 37°C e 50aC. Utilizaram-se dois métodos para avaliar o crescimento de Staphylococcus aureus, ao longo do tempo, nomeadamente o Método Turbidímétrico e o Método de contagem de unidades formadoras de colónias (método das diluições sucessivas). ABSTRACT: Carried out experimental work in order to obtain information on the evolution of the growth of Staphylococcus aureus. We used two strains of Staphylococcus aureus, a strain isolated from a chicken patties and one reference strain, ATCC Nº 29213, these strains were subjected to 3 different pH values (which represent the values of pH it is possible, or is pH 4, 5.5 and 7, the 3 values of NaCI concentration, namely, 0.5%, 7% and 15%. The growth temperature is 7 °C, 37°C and 50ºC. We used two methods to evaluate the growth of Staphylococcus aureus, over time, including the turbidimetric method and the method of counting colony forming units (method of successive dilutions).
Resumo:
Lactococcus garvieae is an important fish and an opportunistic human pathogen. The genomic sequences of several L. garvieae strains have been recently published, opening the possibility of global studies on the biology of this pathogen. In this study, a whole genome DNA microarray of two strains of L. garvieae was designed and validated. This DNA microarray was used to investigate the effects of growth temperature (18°C and 37°C) on the transcriptome of two clinical strains of L. garvieae that were isolated from fish (Lg8831) and from a human case of septicemia (Lg21881). The transcriptome profiles evidenced a strain-specific response to temperature, which was more evident at 18°C. Among the most significant findings, Lg8831 was found to up-regulate at 18°C several genes encoding different cold-shock and cold-induced proteins involved in an efficient adaptive response of this strain to low-temperature conditions. Another relevant result was the description, for the first time, of respiratory metabolism in L. garvieae, whose gene expression regulation was temperature-dependent in Lg21881. This study provides new insights about how environmental factors such as temperature can affect L. garvieae gene expression. These data could improve our understanding of the regulatory networks and adaptive biology of this important pathogen.
Resumo:
Diverse morphologies of multidimensional hierarchical single-crystalline ZnO nanoarchitectures including nanoflowers, nanobelts, and nanowires are obtained by use of a simple thermal evaporation and vapour-phase transport deposition technique by placing Au-coated silicon substrates in different positions inside a furnace at process temperatures as low as 550 °C. The nucleation and growth of ZnO nanostructures are governed by the vapour–solid mechanism, as opposed to the commonly reported vapour–liquid–solid mechanism, when gold is used in the process. The morphological, structural, compositional and optical properties of the synthesized ZnO nanostructures can be effectively tailored by means of the experimental parameters, and these properties are closely related to the local growth temperature and gas-phase supersaturation at the sample position. In particular, room-temperature photoluminescence measurements reveal an intense near-band-edge ultraviolet emission at about 386 nm for nanobelts and nanoflowers, which suggests that these nanostructures are of sufficient quality for applications in, for example, optoelectronic devices.