992 resultados para GNSS signals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic emission (AE) is the phenomenon where stress waves are generated due to rapid release of energy within a material caused by sources such as crack initiation or growth. AE technique involves recording the stress waves by means of sensors and subsequent analysis of the recorded signals to gather information about the nature of the source. Though AE technique is one of the popular non destructive evaluation (NDE) techniques for structural health monitoring of mechanical, aerospace and civil structures; several challenges still exist in successful application of this technique. Presence of spurious noise signals can mask genuine damage‐related AE signals; hence a major challenge identified is finding ways to discriminate signals from different sources. Analysis of parameters of recorded AE signals, comparison of amplitudes of AE wave modes and investigation of uniqueness of recorded AE signals have been mentioned as possible criteria for source differentiation. This paper reviews common approaches currently in use for source discrimination, particularly focusing on structural health monitoring of civil engineering structural components such as beams; and further investigates the applications of some of these methods by analyzing AE data from laboratory tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cognitive radio is an emerging technology proposing the concept of dynamic spec- trum access as a solution to the looming problem of spectrum scarcity caused by the growth in wireless communication systems. Under the proposed concept, non- licensed, secondary users (SU) can access spectrum owned by licensed, primary users (PU) so long as interference to PU are kept minimal. Spectrum sensing is a crucial task in cognitive radio whereby the SU senses the spectrum to detect the presence or absence of any PU signal. Conventional spectrum sensing assumes the PU signal as ‘stationary’ and remains in the same activity state during the sensing cycle, while an emerging trend models PU as ‘non-stationary’ and undergoes state changes. Existing studies have focused on non-stationary PU during the transmission period, however very little research considered the impact on spectrum sensing when the PU is non-stationary during the sensing period. The concept of PU duty cycle is developed as a tool to analyse the performance of spectrum sensing detectors when detecting non-stationary PU signals. New detectors are also proposed to optimise detection with respect to duty cycle ex- hibited by the PU. This research consists of two major investigations. The first stage investigates the impact of duty cycle on the performance of existing detec- tors and the extent of the problem in existing studies. The second stage develops new detection models and frameworks to ensure the integrity of spectrum sensing when detecting non-stationary PU signals. The first investigation demonstrates that conventional signal model formulated for stationary PU does not accurately reflect the behaviour of a non-stationary PU. Therefore the performance calculated and assumed to be achievable by the conventional detector does not reflect actual performance achieved. Through analysing the statistical properties of duty cycle, performance degradation is proved to be a problem that cannot be easily neglected in existing sensing studies when PU is modelled as non-stationary. The second investigation presents detectors that are aware of the duty cycle ex- hibited by a non-stationary PU. A two stage detection model is proposed to improve the detection performance and robustness to changes in duty cycle. This detector is most suitable for applications that require long sensing periods. A second detector, the duty cycle based energy detector is formulated by integrat- ing the distribution of duty cycle into the test statistic of the energy detector and suitable for short sensing periods. The decision threshold is optimised with respect to the traffic model of the PU, hence the proposed detector can calculate average detection performance that reflect realistic results. A detection framework for the application of spectrum sensing optimisation is proposed to provide clear guidance on the constraints on sensing and detection model. Following this framework will ensure the signal model accurately reflects practical behaviour while the detection model implemented is also suitable for the desired detection assumption. Based on this framework, a spectrum sensing optimisation algorithm is further developed to maximise the sensing efficiency for non-stationary PU. New optimisation constraints are derived to account for any PU state changes within the sensing cycle while implementing the proposed duty cycle based detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable ambiguity resolution (AR) is essential to Real-Time Kinematic (RTK) positioning and its applications, since incorrect ambiguity fixing can lead to largely biased positioning solutions. A partial ambiguity fixing technique is developed to improve the reliability of AR, involving partial ambiguity decorrelation (PAD) and partial ambiguity resolution (PAR). Decorrelation transformation could substantially amplify the biases in the phase measurements. The purpose of PAD is to find the optimum trade-off between decorrelation and worst-case bias amplification. The concept of PAR refers to the case where only a subset of the ambiguities can be fixed correctly to their integers in the integer least-squares (ILS) estimation system at high success rates. As a result, RTK solutions can be derived from these integer-fixed phase measurements. This is meaningful provided that the number of reliably resolved phase measurements is sufficiently large for least-square estimation of RTK solutions as well. Considering the GPS constellation alone, partially fixed measurements are often insufficient for positioning. The AR reliability is usually characterised by the AR success rate. In this contribution an AR validation decision matrix is firstly introduced to understand the impact of success rate. Moreover the AR risk probability is included into a more complete evaluation of the AR reliability. We use 16 ambiguity variance-covariance matrices with different levels of success rate to analyse the relation between success rate and AR risk probability. Next, the paper examines during the PAD process, how a bias in one measurement is propagated and amplified onto many others, leading to more than one wrong integer and to affect the success probability. Furthermore, the paper proposes a partial ambiguity fixing procedure with a predefined success rate criterion and ratio-test in the ambiguity validation process. In this paper, the Galileo constellation data is tested with simulated observations. Numerical results from our experiment clearly demonstrate that only when the computed success rate is very high, the AR validation can provide decisions about the correctness of AR which are close to real world, with both low AR risk and false alarm probabilities. The results also indicate that the PAR procedure can automatically chose adequate number of ambiguities to fix at given high-success rate from the multiple constellations instead of fixing all the ambiguities. This is a benefit that multiple GNSS constellations can offer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A satellite based observation system can continuously or repeatedly generate a user state vector time series that may contain useful information. One typical example is the collection of International GNSS Services (IGS) station daily and weekly combined solutions. Another example is the epoch-by-epoch kinematic position time series of a receiver derived by a GPS real time kinematic (RTK) technique. Although some multivariate analysis techniques have been adopted to assess the noise characteristics of multivariate state time series, statistic testings are limited to univariate time series. After review of frequently used hypotheses test statistics in univariate analysis of GNSS state time series, the paper presents a number of T-squared multivariate analysis statistics for use in the analysis of multivariate GNSS state time series. These T-squared test statistics have taken the correlation between coordinate components into account, which is neglected in univariate analysis. Numerical analysis was conducted with the multi-year time series of an IGS station to schematically demonstrate the results from the multivariate hypothesis testing in comparison with the univariate hypothesis testing results. The results have demonstrated that, in general, the testing for multivariate mean shifts and outliers tends to reject less data samples than the testing for univariate mean shifts and outliers under the same confidence level. It is noted that neither univariate nor multivariate data analysis methods are intended to replace physical analysis. Instead, these should be treated as complementary statistical methods for a prior or posteriori investigations. Physical analysis is necessary subsequently to refine and interpret the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a study whereby a series of tests was undertaken using a naturally aspirated 4 cylinder, 2.216 litre, Perkins Diesel engine fitted with a piston having an undersized skirt. This experimental simulation resulted in engine running conditions that included abnormally high levels of piston slap occurring in one of the cylinders. The detectability of the resultant Diesel engine piston slap was investigated using acoustic emission signals. Data corresponding to both normal and piston slap engine running conditions was captured using acoustic emission transducers along with both; in-cylinder pressure and top-dead centre reference signals. Using these signals it was possible to demonstrate that the increased piston slap running conditions were distinguishable by monitoring the piston slap events occurring near the piston mid-stroke positions. However, when monitoring the piston slap events occurring near the TDC/BDC piston stroke positions, the normal and excessive piston slap engine running condition were not clearly distinguishable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a methodology for determining the vertical hydraulic conductivity (Kv) of an aquitard, in a multilayered leaky system, based on the harmonic analysis of arbitrary water-level fluctuations in aquifers. As a result, Kv of the aquitard is expressed as a function of the phase-shift of water-level signals measured in the two adjacent aquifers. Based on this expression, we propose a robust method to calculate Kv by employing linear regression analysis of logarithm transformed frequencies and phases. The frequencies, where the Kv are calculated, are identified by coherence analysis. The proposed methods are validated by a synthetic case study and are then applied to the Westbourne and Birkhead aquitards, which form part of a five-layered leaky system in the Eromanga Basin, Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myopia (short-sightedness) is a common ocular disorder of children and young adults. Studies primarily using animal models have shown that the retina controls eye growth and the outer retina is likely to have a key role. One theory is that the proportion of L (long-wavelength-sensitive) and M (medium-wavelength-sensitive) cones is related to myopia development; with a high L/M cone ratio predisposing individuals to myopia. However, not all dichromats (persons with red-green colour vision deficiency) with extreme L/M cone ratios have high refractive errors. We predict that the L/M cone ratio will vary in individuals with normal trichromatic colour vision but not show a systematic difference simply due to refractive error. The aim of this study was to determine if L/M cone ratios in the central 30° are different between myopic and emmetropic young, colour normal adults. Information about L/M cone ratios was determined using the multifocal visual evoked potential (mfVEP). The mfVEP can be used to measure the response of visual cortex to different visual stimuli. The visual stimuli were generated and measurements performed using the Visual Evoked Response Imaging System (VERIS 5.1). The mfVEP was measured when the L and M cone systems were separately stimulated using the method of silent substitution. The method of silent substitution alters the output of three primary lights, each with physically different spectral distributions to control the excitation of one or more photoreceptor classes without changing the excitation of the unmodulated photoreceptor classes. The stimulus was a dartboard array subtending 30° horizontally and 30° vertically on a calibrated LCD screen. The m-sequence of the stimulus was 215-1. The N1-P1 amplitude ratio of the mfVEP was used to estimate the L/M cone ratio. Data were collected for 30 young adults (22 to 33 years of age), consisting of 10 emmetropes (+0.3±0.4 D) and 20 myopes (–3.4±1.7 D). The stimulus and analysis techniques were confirmed using responses of two dichromats. For the entire participant group, the estimated central L/M cone ratios ranged from 0.56 to 1.80 in the central 3°-13° diameter ring and from 0.94 to 1.91 in the more peripheral 13°-30° diameter ring. Within 3°-13°, the mean L/M cone ratio of the emmetropic group was 1.20±0.33 and the mean was similar, 1.20±0.26, for the myopic group. For the 13°-30° ring, the mean L/M cone ratio of the emmetropic group was 1.48±0.27 and it was slightly lower in the myopic group, 1.30±0.27. Independent-samples t-test indicated no significant difference between the L/M cone ratios of the emmetropic and myopic group for either the central 3°-13° ring (p=0.986) or the more peripheral 13°-30° ring (p=0.108). The similar distributions of estimated L/M cone ratios in the sample of emmetropes and myopes indicates that there is likely to be no association between the L/M cone ratio and refractive error in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wide-Area Measurement Systems (WAMS) provide the opportunity of utilizing remote signals from different locations for the enhancement of power system stability. This paper focuses on the implementation of remote measurements as supplementary signals for off-center Static Var Compensators (SVCs) to damp inter-area oscillations. Combination of participation factor and residue method is used for the selection of most effective stabilizing signal. Speed difference of two generators from separate areas is identified as the best stabilizing signal and used as a supplementary signal for lead-lag controller of SVCs. Time delays of remote measurements and control signals is considered. Wide-Area Damping Controller (WADC) is deployed in Matlab Simulink framework and is tested under different operating conditions. Simulation results reveal that the proposed WADC improve the dynamic characteristic of the system significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclostationary models for the diagnostic signals measured on faulty rotating machineries have proved to be successful in many laboratory tests and industrial applications. The squared envelope spectrum has been pointed out as the most efficient indicator for the assessment of second order cyclostationary symptoms of damages, which are typical, for instance, of rolling element bearing faults. In an attempt to foster the spread of rotating machinery diagnostics, the current trend in the field is to reach higher levels of automation of the condition monitoring systems. For this purpose, statistical tests for the presence of cyclostationarity have been proposed during the last years. The statistical thresholds proposed in the past for the identification of cyclostationary components have been obtained under the hypothesis of having a white noise signal when the component is healthy. This need, coupled with the non-white nature of the real signals implies the necessity of pre-whitening or filtering the signal in optimal narrow-bands, increasing the complexity of the algorithm and the risk of losing diagnostic information or introducing biases on the result. In this paper, the authors introduce an original analytical derivation of the statistical tests for cyclostationarity in the squared envelope spectrum, dropping the hypothesis of white noise from the beginning. The effect of first order and second order cyclostationary components on the distribution of the squared envelope spectrum will be quantified and the effectiveness of the newly proposed threshold verified, providing a sound theoretical basis and a practical starting point for efficient automated diagnostics of machine components such as rolling element bearings. The analytical results will be verified by means of numerical simulations and by using experimental vibration data of rolling element bearings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diagnostics of mechanical components operating in transient conditions is still an open issue, in both research and industrial field. Indeed, the signal processing techniques developed to analyse stationary data are not applicable or are affected by a loss of effectiveness when applied to signal acquired in transient conditions. In this paper, a suitable and original signal processing tool (named EEMED), which can be used for mechanical component diagnostics in whatever operating condition and noise level, is developed exploiting some data-adaptive techniques such as Empirical Mode Decomposition (EMD), Minimum Entropy Deconvolution (MED) and the analytical approach of the Hilbert transform. The proposed tool is able to supply diagnostic information on the basis of experimental vibrations measured in transient conditions. The tool has been originally developed in order to detect localized faults on bearings installed in high speed train traction equipments and it is more effective to detect a fault in non-stationary conditions than signal processing tools based on spectral kurtosis or envelope analysis, which represent until now the landmark for bearings diagnostics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, the GNSS computing modes are of two classes: network-based data processing and user receiver-based processing. A GNSS reference receiver station essentially contributes raw measurement data in either the RINEX file format or as real-time data streams in the RTCM format. Very little computation is carried out by the reference station. The existing network-based processing modes, regardless of whether they are executed in real-time or post-processed modes, are centralised or sequential. This paper describes a distributed GNSS computing framework that incorporates three GNSS modes: reference station-based, user receiver-based and network-based data processing. Raw data streams from each GNSS reference receiver station are processed in a distributed manner, i.e., either at the station itself or at a hosting data server/processor, to generate station-based solutions, or reference receiver-specific parameters. These may include precise receiver clock, zenith tropospheric delay, differential code biases, ambiguity parameters, ionospheric delays, as well as line-of-sight information such as azimuth and elevation angles. Covariance information for estimated parameters may also be optionally provided. In such a mode the nearby precise point positioning (PPP) or real-time kinematic (RTK) users can directly use the corrections from all or some of the stations for real-time precise positioning via a data server. At the user receiver, PPP and RTK techniques are unified under the same observation models, and the distinction is how the user receiver software deals with corrections from the reference station solutions and the ambiguity estimation in the observation equations. Numerical tests demonstrate good convergence behaviour for differential code bias and ambiguity estimates derived individually with single reference stations. With station-based solutions from three reference stations within distances of 22–103 km the user receiver positioning results, with various schemes, show an accuracy improvement of the proposed station-augmented PPP and ambiguity-fixed PPP solutions with respect to the standard float PPP solutions without station augmentation and ambiguity resolutions. Overall, the proposed reference station-based GNSS computing mode can support PPP and RTK positioning services as a simpler alternative to the existing network-based RTK or regionally augmented PPP systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In presented method combination of Fourier and Time domain detection enables to broaden the effective bandwidth for time dependent Doppler Signal that allows for using higher-order Bessel functions to calculate unambiguously the vibration amplitudes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many large-scale GNSS CORS networks have been deployed around the world to support various commercial and scientific applications. To make use of these networks for real-time kinematic positioning services, one of the major challenges is the ambiguity resolution (AR) over long inter-station baselines in the presence of considerable atmosphere biases. Usually, the widelane ambiguities are fixed first, followed by the procedure of determination of the narrowlane ambiguity integers based on the ionosphere-free model in which the widelane integers are introduced as known quantities. This paper seeks to improve the AR performance over long baseline through efficient procedures for improved float solutions and ambiguity fixing. The contribution is threefold: (1) instead of using the ionosphere-free measurements, the absolute and/or relative ionospheric constraints are introduced in the ionosphere-constrained model to enhance the model strength, thus resulting in the better float solutions; (2) the realistic widelane ambiguity precision is estimated by capturing the multipath effects due to the observation complexity, leading to improvement of reliability of widelane AR; (3) for the narrowlane AR, the partial AR for a subset of ambiguities selected according to the successively increased elevation is applied. For fixing the scalar ambiguity, an error probability controllable rounding method is proposed. The established ionosphere-constrained model can be efficiently solved based on the sequential Kalman filter. It can be either reduced to some special models simply by adjusting the variances of ionospheric constraints, or extended with more parameters and constraints. The presented methodology is tested over seven baselines of around 100 km from USA CORS network. The results show that the new widelane AR scheme can obtain the 99.4 % successful fixing rate with 0.6 % failure rate; while the new rounding method of narrowlane AR can obtain the fix rate of 89 % with failure rate of 0.8 %. In summary, the AR reliability can be efficiently improved with rigorous controllable probability of incorrectly fixed ambiguities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FLOWERING LOCUS T (FT) and CENTRORADIALIS (CEN) homologs have been implicated in regulation of growth, determinacy and flowering. The roles of kiwifruit FT and CEN were explored using a combination of expression analysis, protein interactions, response to temperature in high-chill and low-chill kiwifruit cultivars and ectopic expression in Arabidopsis and Actinidia. The expression and activity of FT was opposite from that of CEN and incorporated an interaction with a FLOWERING LOCUS D (FD)-like bZIP transcription factor. Accumulation of FT transcript was associated with plant maturity and particular stages of leaf, flower and fruit development, but could be detected irrespective of the flowering process and failed to induce precocious flowering in transgenic kiwifruit. Instead, transgenic plants demonstrated reduced growth and survival rate. Accumulation of FT transcript was detected in dormant buds and stem in response to winter chilling. In contrast, FD in buds was reduced by exposure to cold. CEN transcript accumulated in developing latent buds, but declined before the onset of dormancy and delayed flowering when ectopically expressed in kiwifruit. Our results suggest roles for FT, CEN and FD in integration of developmental and environmental cues that affect dormancy, budbreak and flowering in kiwifruit.