110 resultados para GLYCATION
Resumo:
Diabetes mellitus is responsible for a spectrum of cardiovascular disease. The best known complications arise from endothelial dysfunction, oxidation, inflammation, and vascular remodelling and contribute to atherogenesis. However, the effects on the heart also relate to concurrent hypertensive heart disease, as well as direct effects of diabetes on the myocardium. Diabetic heart disease, defined as myocardial disease in patients with diabetes that cannot be ascribed to hypertension, coronary artery disease, or other known cardiac disease, is reviewed.
Resumo:
Modification of proteins by reactive ethanol metabolites has been known for some time to occur in the liver, the main site of ethanol metabolism. In more recent studies of laboratory animals, similar modifications have been detected in organs with lesser ability to metabolize ethanol, such as skeletal and cardiac muscle and brain. Such modification may alter protein function or form a neoantigen, making it a target for immune attack. We now report an analysis of protein modification derived from ethanol metabolites in human brain tissue by ELISA using adduct-specific antibodies. We obtained autopsy cerebellum samples from 10 alcoholic cerebellar degeneration cases and 10 matched controls under informed written consent from the next of kin and clearance from the UQ Human Ethics Committee. Elevated levels of protein modifications derived from acetaldehyde (unreduced-acetaldehyde and acetaldehyde-advanced glycation end-product adducts), from malondialdehyde (malondialdehyde adducts) and from combined adducts (malondialdehydeacetaldehyde (MAA) adducts) were detected in alcoholic cerebellar degeneration samples when compared to controls. Other adduct types found in liver samples, such as reduced-acetaldehyde and those derived from hydroxyethyl radicals, were not detected in brain samples. This may reflect the different routes of ethanol metabolism in the two tissues. This is the first report of elevated protein modification in alcoholic cerebellar degeneration, and suggests that such modification may play a role in the pathogenesis of brain injury. Supported by NIAAA under grant NIH AA12404 and the NHMRC (Australia) under grant #981723.
Resumo:
Biomolecules are susceptible to many different post-translational modifications that have important effects on their function and stability, including glycosylation, glycation, phosphorylation and oxidation chemistries. Specific conversion of aspartic acid to its isoaspartyl derivative or arginine to citrulline leads to autoantibody production in models of rheumatoid disease, and ensuing autoantibodies cross-react with native antigens. Autoimmune conditions associate with increased activation of immune effector cells and production of free radical species via NADPH oxidases and nitric oxide synthases. Generation of neo-antigenic determinants by reactive oxygen and nitrogen species ROS and RNS) may contribute to epitope spreading in autoimmunity. The oxidation of amino acids by peroxynitrite, hypochlorous acid and other reactive oxygen species (ROS) increases the antigenicity of DNA, LDL and IgG, generating ligands for which autoantibodies show higher avidity. This review focuses on the evidence for ROS and RNS in promoting the autoimmune responses observed in diseases rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). It considers the evidence for ROS/RNS-induced antigenicity arising as a consequence of failure to remove or repair ROS/RNS damaged biomolecules and suggests that an associated defect, probably in T cell signal processing or/or antigen presentation, is required for the development of disease.
Resumo:
Metformin is an anti-hyperglycaemic agent widely used in the treatment of type 2 diabetes. It counters insulin resistance through insulin-dependent and -independent effects on cellular nutrient and energy metabolism, improving glycaemic control without weight gain and without increasing the risk of hypoglycaemia. Metformin can also benefit several risk factors for vascular disease independently of glycaemic control. In subjects with metabolic syndrome, metformin improves prognosis. It decreases progression of impaired glucose tolerance to type 2 diabetes, assists weight reduction especially in conjunction with lifestyle management and exerts other potentially favourable cardiovascular effects. For example, metformin can modestly improve the lipid profile in some dyslipidaemic individuals, reduce pro-inflammatory cytokines and monocyte adhesion molecules and decrease advanced glycation end products. Metformin can also improve parameters of endothelial function in the macro- and micro-vasculature, indicating lower athero-thrombotic risk, but it does not appear to reduce blood pressure. In normoglycaemic individuals with risk factors for diabetes and in women with polycystic ovary syndrome there is evidence that metformin can defer or prevent the development of diabetes. Thus, metformin offers beneficial effects to delay the onset and reverse or reduce the progression of many of the metabolic features and cardiovascular risk factors associated with metabolic syndrome.
Resumo:
An imbalance between reactive oxygen species (ROS) production and antioxidant scavenging has been implicated in type 2 diabetes. ROS are a byproduct in type 2 diabetes, generated during protein glycation and as a consequence of advanced glycation end-products-receptor binding; they impair insulin signalling pathways and induce cytotoxicity in pancreatic beta cells. Neutralisation of oxidants by increased antioxidant availability may mitigate these effects. Several human intervention studies have been undertaken to determine whether dietary antioxidants exert beneficial effects for type 2 diabetes patients. This paper describes a systematic review and meta-analysis of the effects of dietary supplementation with antioxidant vitamins C or E on (1) plasma glucose and insulin concentrations, as an indicator of the capacity for antioxidant to interfere with disease process and (2) on glycated haemoglobin A as a measure of antioxidant effects on posttranslational protein modification implicated in disease complications. Combined analysis of 14 studies that met inclusion criteria revealed that dietary antioxidant supplementation did not affect plasma glucose or insulin levels, suggesting that they could not interfere with the pathogenesis of insulin resistance. However, HbA levels were significantly reduced by antioxidant supplementation, suggesting that antioxidants may have some benefit in protecting against the complications of type 2 diabetes. © 2011 The Author(s).
Resumo:
Introduction: The antihyperglycaemic agent metformin is widely used in the treatment of type 2 diabetes. Data from the UK Prospective Diabetes Study and retrospective analyses of large healthcare databases concur that metformin reduces the incidence of myocardial infarction and increases survival in these patients. This apparently vasoprotective effect appears to be independent of the blood glucose-lowering efficacy. Effects of metformin: Metformin has long been known to reduce the development of atherosclerotic lesions in animal models, and clinical studies have shown the drug to reduce surrogate measures such as carotid intima-media thickness. The anti-atherogenic effects of metformin include reductions in insulin resistance, hyperinsulinaemia and obesity. There may be modest favourable effects against dyslipidaemia, reductions in pro-inflammatory cytokines and monocyte adhesion molecules, and improved glycation status, benefiting endothelial function in the macro- and micro-vasculature. Additionally metformin exerts anti-thrombotic effects, contributing to overall reductions in athero-thrombotic risk in type 2 diabetic patients. © 2008 Springer Science+Business Media, LLC.
Resumo:
Eight otherwise healthy diabetic volunteers took a daily antioxidant supplement consisting of vitamin E (200 IU), vitamin C (250 mg) and α-lipoic acid (90 mg) for a period of 6 weeks. Diabetic dapsone hydroxylamine-mediated methaemoglobin formation and resistance to erythrocytic thiol depletion was compared with age and sex-matched non-diabetic subjects. At time zero, methaemoglobin formation in the non-diabetic subjects was greater at all four time points compared with that of the diabetic subjects. Resistance to glutathione depletion was initially greater in non-diabetic compared with diabetic samples. Half-way through the study (3 weeks), there were no differences between the two groups in methaemoglobin formation and thiol depletion in the diabetic samples was now lower than the non-diabetic samples at 10 and 20 min. At 6 weeks, diabetic erythrocytic thiol levels remained greater than those of non-diabetics. HbA1c values were significantly reduced in the diabetic subjects at 6 weeks compared with time zero values. At 10 weeks, 4 weeks after the end of supplementation, the diabetic HbA1c values significantly increased to the point where they were not significantly different from the time zero values. Total antioxidant status measurement (TAS) indicated that diabetic plasma antioxidant capacity was significantly improved during antioxidant supplementation. Conversion of α-lipoic acid to dihydrolipoic acid (DHLA) in vivo led to potent interference in a standard fructosamine assay kit, negating its use in this study. This report suggests that triple antioxidant therapy in diabetic volunteers attenuates the in vitro experimental oxidative stress of methaemoglobin formation and reduces haemoglobin glycation in vivo. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The review deals with impairment of Ca2+-ATPases by high glucose or its derivatives in vitro, as well as in human diabetes and experimental animal models. Acute increases in glucose level strongly correlate with oxidative stress. Dysfunction of Ca2+-ATPases in diabetic and in some cases even in nondiabetic conditions may result in nitration of and in irreversible modification of cysteine-674. Nonenyzmatic protein glycation might lead to alteration of Ca2+-ATPase structure and function contributing to Ca2+ imbalance and thus may be involved in development of chronic complications of diabetes. The susceptibility to glycation is probably due to the relatively high percentage of lysine and arginine residues at the ATP binding and phosphorylation domains. Reversible glycation may develop into irreversible modifications (advanced glycation end products, AGEs). Sites of SERCA AGEs are depicted in this review. Finally, several mechanisms of prevention of Ca2+-pump glycation, and their advantages and disadvantages are discussed. © 2013 Informa UK, Ltd.
Resumo:
Peer reviewed
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
BACKGROUND: Postoperative delirium is prevalent in older patients and associated with worse outcomes. Recent data in animal studies demonstrate increases in inflammatory markers in plasma and cerebrospinal fluid (CSF) even after aseptic surgery, suggesting that inflammation of the central nervous system may be part of the pathogenesis of postoperative cognitive changes. We investigated the hypothesis that neuroinflammation was an important cause for postoperative delirium and cognitive dysfunction after major non-cardiac surgery. METHODS: After Institutional Review Board approval and informed consent, we recruited patients undergoing major knee surgery who received spinal anesthesia and femoral nerve block with intravenous sedation. All patients had an indwelling spinal catheter placed at the time of spinal anesthesia that was left in place for up to 24 h. Plasma and CSF samples were collected preoperatively and at 3, 6, and 18 h postoperatively. Cytokine levels were measured using ELISA and Luminex. Postoperative delirium was determined using the confusion assessment method, and cognitive dysfunction was measured using validated cognitive tests (word list, verbal fluency test, digit symbol test). RESULTS: Ten patients with complete datasets were included. One patient developed postoperative delirium, and six patients developed postoperative cognitive dysfunction. Postoperatively, at different time points, statistically significant changes compared to baseline were present in IL-5, IL-6, I-8, IL-10, monocyte chemotactic protein (MCP)-1, macrophage inflammatory protein (MIP)-1α, IL-6/IL-10, and receptor for advanced glycation end products in plasma and in IFN-γ, IL-6, IL-8, IL-10, MCP-1, MIP-1α, MIP-1β, IL-8/IL-10, and TNF-α in CSF. CONCLUSIONS: Substantial pro- and anti-inflammatory activity in the central neural system after surgery was found. If confirmed by larger studies, persistent changes in cytokine levels may serve as biomarkers for novel clinical trials.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Advanced glycation end-products (AGEs) are linked to aging and correlated diseases. The aim of present study was to evaluate oxidative stress related parameters in J774A.1 murine macrophage cells during chronic exposure to a subtoxic concentration of AGE (5% ribose-glycated serum (GS)) and subsequently for 48 h to a higher dose (10% GS). No effects on cell viability were evident in either experimental condition. During chronic treatment, glycative markers (free and bound pentosidine) increased significantly in intra- and extracellular environments, but the production and release of thiobarbituric acid reactive substances (TBARs), as an index of lipid peroxidation, underwent a time-dependent decrease. Exposure to 10% GS evidenced that glycative markers rose further, while TBARs elicited a cellular defence against oxidative stress. Nonadapted cultures showed an accumulation of AGEs, a marked oxidative stress, and a loss of viability. During 10% GS exposure, reduced glutathione levels in adapted cultures remained constant, as did the oxidized glutathione to reduced glutathione ratio, while nonadapted cells showed a markedly increased redox ratio. A constant increase of heat shock protein 70 (HSP70) mRNA was observed in all experimental conditions. On the contrary, HSP70 expression became undetectable for a longer exposure time; this could be due to the direct involvement of HSP70 in the refolding of damaged proteins. Our findings suggest an adaptive response of macrophages to subtoxic doses of AGE, which could constitute an important factor in the spread of damage to other cellular types during aging.Key words: in vitro cytotoxicity, AGE, pentosidine, glycoxidation, oxidative stress, TBARs.