983 resultados para GLUCOSE-OXIDASE ELECTRODE


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are interesting materials with extraordinary properties for various applications. Here, vertically-aligned multiwalled CNTs (VA-MWCNTs) are grown by our dual radio frequency plasma enhanced chemical vapor deposition (PECVD). After optimizing the synthesis processes, these VA-MWCNTs were fabricated in to a series of devices for applications in vacuum electronics, glucose biosensors, glucose biofuel cells, and supercapacitors In particular, we have created the so-called PMMA-CNT matrices (opened-tip CNTs embedded in poly-methyl methacrylate) that are promising components in a novel energy sensing, generation and storage (SGS) system that integrate glucose biosensors, biofuel cells, and supercapacitors. The content of this thesis work is described as follows: 1. We have first optimized the synthesis of VA-MWCNTs by our PECVD technique. The effects of CH4 flow rate and growth duration on the lengths of these CNTs were studied. 2. We have characterized these VA-MWCNTs for electron field emission. We noticed that as grown CNTs suffers from high emission threshold, poor emission density and poor long-term stability. We attempted a series of experiments to understand ways to overcome these problems. First, we decrease the screening effects on VA-MWCNTs by creating arrays of self-assembled CNT bundles that are catalyst-free and opened tips. These bundles are found to enhance the field emission stability and emission density. Subsequently, we have created PMMA-CNT matrices that are excellent electron field emitters with an emission threshold field of more than two-fold lower than that of the as-grown sample. Furthermore, no significant emission degradation was observed after a continuous emission test of 40 hours (versus much shorter tests in reported literatures). Based on the new understanding we learnt from the PMMA-CNT matrices, we further created PMMA-STO-CNT matrices by embedding opened-tip VA-MWCNTs that are coated with strontium titanate (SrTiO3) with PMMA. We found that the PMMA-STO-CNT matrices have all the desired properties of the PMMA-CNT matrices. Furthermore, PMMA-STO-CNT matrices offer much lower emission threshold field, about five-fold lower than that of as grown VA-MWCNTs. The new understandings we obtained are important for practical application of VA-MWCNTs in field emission devices. 3. Subsequently, we have functionalized PMMA-CNT matrices for glucose biosensing. Our biosensor was developed by immobilized glucose oxidase (GOχ) on the opened-tip CNTs exposed on the matrices. The durability, stability and sensitivity of the biosensor were studied. In order to understand the performance of miniaturized glucose biosensors, we have then investigated the effect of working electrode area on the sensitivity and current level of our biosensors. 4. Next, functionalized PMMA-CNT matrices were utilized for energy generation and storage. We found that PMMA-CNT matrices are promising component in glucose/O2 biofuel cells (BFCs) for energy generation. The construction of these BFCs and the effect of the electrode area on the power density of these BFCs were investigated. Then, we have attempted to use PMMA-CNT matrices as supercapacitors for energy storage devices. The performance of these supercapacitors and ways to enhance their performance are discussed. 5. Finally, we further evaluated the concept of energy SGS system that integrated glucose biosensors, biofuel cells, and supercapacitors. This SGS system may be implantable to monitor and control the blood glucose level in our body.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tese de doutoramento, Química (Química Física), Universidade de Lisboa, Faculdade de Ciências, 2016

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We demonstrate a novel glucose sensor based on an optical fiber grating with an excessively tilted index fringe structure and its surface modified by glucose oxidase (GOD). The aminopropyltriethoxysilane (APTES) was utilized as binding site for the subsequent GOD immobilization. Confocal microscopy and fluorescence microscope were used to provide the assessment of the effectiveness in modifying the fiber surface. The resonance wavelength of the sensor exhibited red-shift after the binding of the APTES and GOD to the fiber surface and also in the glucose detection process. The red-shift of the resonance wavelength showed a good linear response to the glucose concentration with a sensitivity of 0.298nm(mg/ml)-1 in the very low concentration range of 0.0∼3.0mg/ml. Compared to the previously reported glucose sensor based on the GOD-immobilized long period grating (LPG), the 81° tilted fiber grating (81°-TFG) based sensor has shown a lower thermal cross-talk effect, better linearity and higher Q-factor in sensing response. In addition, its sensitivity for glucose concentration can be further improved by increasing the grating length and/or choosing a higher-order cladding mode for detection. Potentially, the proposed techniques based on 81°-TFG can be developed as sensitive, label free and micro-structural sensors for applications in food safety, disease diagnosis, clinical analysis and environmental monitoring.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report a highly sensitive, high Q-factor, label free and selective glucose sensor by using excessively tilted fiber grating (Ex-TFG) inscribed in the thin-cladding optical fiber (TCOF). Glucose oxidase (GOD) was covalently immobilized on optical fiber surface and the effectiveness of GOD immobilization was investigated by the fluorescence microscopy and highly accurate spectral interrogation method. In contrast to the long period grating (LPG) and optical fiber (OF) surface Plasmon resonance (SPR) based glucose sensors, the Ex-TFG configuration has merits of nearly independent cross sensitivity of the environmental temperature, simple fabrication method (no noble metal deposition or cladding etching) and high detection accuracy (or Q-factor). Our experimental results have shown that Ex-TFG in TCOF based sensor has a reliable and fast detection for the glucose concentration as low as 0.1~2.5mg/ml and a high sensitivity of ~1.514nm·(mg/ml)−1, which the detection accuracy is ~0.2857nm−1 at pH 5.2, and the limit of detection (LOD) is 0.013~0.02mg/ml at the pH range of 5.2~7.4 by using an optical spectrum analyzer with a resolution of 0.02nm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A high sensitive glucose sensor using microfiber based Mach-Zehnder interferometer (MZI) is proposed. Microfiber is firstly immobilized with glucose oxidase (GOD) and then employed as sensing probe in MZI. By tracking the shift of the interference spectrum, a high sensitivity up to 2.46nm. (mg/ml)-1 is achieved at the glucose concentration range of 0-3mg/ml.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peroxidative bromination of phenol red to its tetrabromo derivative, bromophenol blue, required vanadate in addition to H2O2 when carried out in the pH range of 5-7. Excess H2O2, with ratio of H2O2:vanadate of 2:1 and above, prevented the reaction. Diperoxovanadate, known to be formed in such reaction mixtures, was ineffective by itself and needed uncomplexed vanadate (V-v) or vanadyl (V-iv) to support bromination. Bromide-assisted reduction of the excess vanadate to vanadyl appeared to be an essential secondary reaction. In the absence of phenol red oxygen was released, and concomitantly bromide was oxidized to a form competent to brominate phenol red added after termination of oxygen release. These findings indicated participation of reactions leading to an intermediate derived from vanadyl and diperoxovanadate, previously described from this laboratory (Arch. Biochem. Biophys. 316, 319-326, 1995). Continuous bromination of phenol red occurred when glucose oxidase-glucose system was used as a source of continuous flow of H2O2. A scheme of reactions involving peroxovanadates (mono-, di-, mu-, and bromo-) is proposed for the formation and utilization of an active brominating species and for the recycling of the product, mono-peroxovanadate, by H2O2, which explains the catalytic role of vanadium in the bromoperoxidation reaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lectins (phytohaemagglutinin) are known to have the unique property of binding with certain specific sugars, polysaccharides and glycoproteins. Although the kinetics of interaction between lectins and sugar have been extensively studied, the binding characteristics of the lectins with various glycoproteins are not well understood. In this laboratory a systematic study has been initiated in relation to the interaction of lectins with glycoproteins. Concanavalin A is known to bind alpha-glucosides, mannosides and biopolymers having these sugar configurations. A galactose binding protein from caster bean has been purified to homogeneity and was found to contain mannose. This lectin was used as the source of glycoprotein for studying its interaction with concanavalin A. This study showed that the interaction is temperature dependent and the dissociation is time and alpha-methyl glucoside concentration dependent. This has led to speculate a model for cell-lectin interaction. Using concanavalin A it has been shown that all the lysosomal enzymes from brain studied were glycoprotein in nature. Moreover, using Sepharose-bound concanavalin A it has been possible to devise a method by which these lysosomal enzymes could be purified considerably. With the knowledge that the interaction between lectin and glycoprotein is not only dependent on the specific sugar present in the glycoprotein, but also on the nature of the glycoprotein it was possible to develop a novel method for immobilizing various glycoprotein enzymes, such as arylsulphatase A, hyaluronidase and glucose oxidase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diperoxovanadate is effective only in presence of free vanadate in vanadium-dependent bromoperoxidation at physiological pH. Peroxide in the form of bridged divanadate complex (VOOV-type), but not the bidentate form as in diperoxovanadate, is proposed to be the oxidant of bromide. In order to obtain direct evidence, peroxo-divanadate complexes with glycyl-glycine, glycyl-alanine and glycyl-asparagine as heteroligands were synthesized. By elemental analysis and spectral studies they were characterized to be triperoxo-divanadates, [V2O2(O-2)(3)(peptide)(3)]. H2O, with the two vanadium atoms bridged by a peroxide and a heteroligand. The dipeptide seems to stabilize the peroxo-bridge by inter-ligand interaction, possibly hydrogen bonding. This is indicated by rapid degradation of these compounds on dissolving in water with partial loss of peroxide accompanied by release of bubbles of oxygen. The V-51-NMR spectra of such solutions showed diperoxovanadate and decavanadate (oligomerized from vanadate) as the products. Additional oxygen was released on treating these solutions with catalase as expected of residual diperoxovanadate. The solid compounds when added to the reaction mixtures showed transient, rapid bromoperoxidation reaction, but not oxidation of NADH or inactivation of glucose oxidase, the other two activities shown by a mixture of diperoxovanadate and vanadyl. This demonstration of peroxide-bridged divanadate as powerful, selective oxidant of bromide, active at physiological pH, should make it a possible candidate of mimic in the action of vanadium in bromoperoxidase proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogen peroxide (H2O2) is a key reactive oxygen species and a messenger in cellular signal transduction apart from playing a vital role in many biological processes in living organisms. In this article, we present phenyl boronic acid-functionalized quinone-cyanine (QCy-BA) in combination with AT-rich DNA (exogenous or endogenous cellular DNA), i.e., QCy-BA subset of DNA as a stimuli-responsive NIR fluorescence probe for measuring in vitro levels of H2O2. In response to cellular H2O2 stimulus, QCy-BA converts into QCy-DT, a one-donor-two-acceptor (D2A) system that exhibits switch-on NIR fluorescence upon binding to the DNA minor groove. Fluorescence studies on the combination probe QCy-BA subset of DNA showed strong NIR fluorescence selectively in the presence of H2O2. Furthermore, glucose oxidase (GOx) assay confirmed the high efficiency of the combination probe QCy-BA subset of DNA for probing H2O2 generated in situ through GOx-mediated glucose oxidation. Quantitative analysis through fluorescence plate reader, flow cytometry and live imaging approaches showed that QCy-BA is a promising probe to detect the normal as well as elevated levels of H2O2 produced by EGF/Nox pathways and post-genotoxic stress in both primary and senescent cells. Overall, QCy-BA, in combination with exogenous or cellular DNA, is a versatile probe to quantify and image H2O2 in normal and disease-associated cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

过氧化氢(Hydrogen peroxide,H2O2)是植物和病原微生物互作中快速合成的一种早期活性氧类(reactive oxygen species, ROS ),它在植物受到病原微生物侵染后引发的一系列防御反应中起着非常重要的作用,因此通过外源基因导入提高植物体内过氧化氢的含量,可以增强植物的广谱抗病性。葡萄糖氧化酶(glucose oxidase, GO)可以催化β-D-葡萄糖氧化生成过氧化氢和葡萄糖酸,此酶已在数种细菌和真菌中检测到,但在植物和动物中仍未发现。为了尝试将此酶应用于水稻广谱抗病基因工程,本研究将葡萄糖氧化酶基因插入具有潮霉素抗性选择标记的双元载体pCAMBIA1301,新构建为水稻高效表达载体pCAG1301。将此质粒导入根癌农杆菌(Agrobacterium tumefaciens )菌株LBA4404后,转化粳稻(Oryza sativa )品种日本晴(Nipponbare)成熟胚来源的愈伤组织和幼胚,并由筛选出的潮霉素抗性愈伤组织分化再生植株。对所得到的潮霉素抗性植株的Southern杂交分析表明GO基因已整合到受体基因组,为单拷贝或双拷贝插入。利用过氧化氢与淀粉-碘化钾反应显蓝色的特性检测到了转基因植株产生的过氧化氢,证实GO基因表达产生的葡萄糖氧化酶已经在水稻中发挥功能,这是将GO基因转入单子叶植物的首例报道。 基于过氧化氢诱导的植物防御反应没有种属专一性的优点,可以预期所得转基因水稻植株很可能对水稻的多种病原菌具有良好的抗性。已完成的抗病性鉴定表明,所得转基因水稻植株对稻瘟病具有良好的抗性。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Methyl parathion hydrolase (MPH) is an enzyme that catalyzes the degradation of methyl parathion, generating a yellow product with specific absorption at 405 nm. The application of MPH as a new labeling enzyme was illustrated in this study. The key advantages of using MPH as a labeling enzyme are as follows: (1) unlike alkaline phosphatase (AP), horseradish peroxidase (HRP), and glucose oxidase (GOD), MPH is rarely found in animal cells, and it therefore produces less background noise; (2) its active form in solution is the monomer, with a molecular weight of 37 kDa; (3) its turnover number is 114.70 +/- 13.19 s(-1), which is sufficiently high to yield a significant signal for sensitive detection; and (4) its 3D structure is known and its C-terminal that is exposed to the surface can be easily subjected to the construction of genetic engineering monocloning antibody-enzyme fusion for enzyme-linked immunosorbent assay (ELISA). To demonstrate its utility, MPH was ligated to an single-chain variable fragment (scFv), known as A1E, against a white spot syndrome virus (WSSV) with the insertion of a [-(Gly-Ser)(5)-] linker peptide. The resulting fusion protein MPH-A1E possessed both the binding specificity of the scFv segment and the catalytic activity of the MPH segment. When MPH-A1E was used as an ELISA reagent, 25 ng purified WSSV was detected; this was similar to the detection sensitivity obtained using A1E scFv and the HRP/Anti-E Tag Conjugate protocol. The fusion protein also recognized the WSSV in 1 mu L hemolymph from an infected shrimp and differentiated it from a healthy shrimp.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文对不同菌种(酵母菌和运动发酵单胞菌)快速生产燃料乙醇的条件进行了研究,实现了鲜甘薯快速转化为燃料乙醇。全文分为两部分: 第一部分:酵母菌快速生产燃料乙醇的条件研究。通过单因素试验,酵母菌快速生产燃料乙醇的条件为:发酵方式采用边糖化边发酵(SSF),蒸煮温度为85 ℃,料水比2:1(初始糖浓度 210 g/kg),糖化酶用量0.75 AGU/g 鲜甘薯,接种量10%(v/w)。在最优条件下,经过24 h发酵,乙醇浓度可达97.44 g/kg, 发酵效率为92%,发酵强度为4.06 g/kg/h。由于采用了低温蒸煮和SSF,可以大大节约能耗,从而降低乙醇生产的成本。同时,利用摇瓶优化的条件,进行了10 L,100 L,500 L发酵罐的放大试验,由于发酵罐初期可以人为通氧,使菌体能迅速积累,发酵时间缩短2 h,发酵效率在90%以上。 第二部分:运动发酵单胞菌快速生产燃料乙醇条件研究。通过单因素试验和正交试验获得了发酵的最佳参数:初始pH值6.0-7.0,硫酸铵5.0 g/kg,糖化酶量1.6 AUG/kg淀粉,初始糖浓度200 g/kg,接种量12.5%(v/w)。经过21 h发酵,乙醇浓度为95.15 g/kg,发酵效率可达94%。同时对不灭菌发酵也进行了研究,发酵效率可达92%。为鲜甘薯运动发酵单胞菌燃料乙醇的工业化生产打下基础。 对发酵结束后的残糖进行了研究。通过薄层层析和葡萄氧化酶测定证明:无论是酵母菌还是运动发酵单胞菌发酵结束后的发酵液中都不含葡萄糖。经过HPLC进一步分析残糖说明:发酵液中已没有葡萄糖成分;经糖化酶水解后仍没有葡萄糖出现;但经酸水解后又出现了葡萄糖,说明结束后的残糖是一些低聚糖结构。有关残糖的结构需要进一步研究。可以通过开发高效的低聚糖水解酶来降低发酵液的残糖,提高原料的利用率。 A new technology for rapid production fuel ethanol from fresh sweet potato by different microorganisms (Saccharomyces cerevisiae and Zymomonas mobilis) was gained in this research. The paper involved two parts: Part 1: The study on fuel ethanol rapid production from fresh sweet potato by Saccharomyces cerevisiae. The following parameters of Saccharomyces cerevisiae was investigated by a series of experiments: fermentation models, cooking temperature, initial sugar concentration and glucoamylase dosage. The results showed that SSF (simultaneous saccharification and fermentation) not only reduced the fermentation time (from 30 to 24h) but also enhanced the ethanol concentration (from 73.56 to 95.96 g/kg). With low-temperature-cooking (85 ℃) using SSF, the Saccharomyces cerevisiae was able to produce ethanol 97.44 g/kg which the fermentation yield could reach to 92% and ethanol productivity 4.06 g/kg/h from sweet potato enzymatic hydrolysis. Furthermore, the savings in energy by carrying out the cooking (85 ℃) and saccharification (30 ℃) step at low temperature had been realized. The results were also verified in 10 L, 100 L and 500 L fermentor. The fermentation yield was no less than 90%. The fermentation time of fermenter was shorter than Erlenmeyer flask. This may be that the aeration in the early fermentation period is available, which lead to the rapidly commutations of biomass. Part 2: The technology of ethanol rapid production with simultaneous saccharification and fermentation ( SSF ) by Zymomonas mobilis,using fresh sweet potato as raw material was studied. The effects of various factors on the yield of ethanol were investigated by the single factor and the orthogonal experiments. As a result, the optimal technical conditions were obtained from those experiments:initial pH value 6.0-7.0, nitride 5.0 g/kg,(NH4)2SO4, glucoamylase 1.6 AUG/kg starch, inoculums concentration 12.5% (v/w). The Zymomonas mobilis was able to produce ethanol 95.15 g/kg, with 94% of the theoretical yield, from fresh sweet potato after 24 h fermentation. The fermentation efficiency of non-sterilized was also reach to 92%. We also analyzed the final fermentation residual sugars of Saccharomyces cerevisiae and Zymomonas mobilis. When the residual sugars were analyzed by thin-layer chromatogram and glucose oxidase, there was no glucose. The analysis of reducing sugars by HPLC showed that there was no glucose existed in the fermentation liquor. However, the glucose appeared after being hydrolyzed by acid. It is indicated that the residual sugars in the final fermentation liquor were the configuration of oligosaccharide, which was linked by the special glycosidic bonds. It was feasible for reducing residual sugars to develope the enzyme that can degradation the oligosaccharide.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A facile magnetic control system was designed in bioelectrocatalytic process based on functionalized iron oxide particles. The iron oxide particles were modified with glucose oxidase, and ferrocene dicarboxylic acid was used as electron transfer mediator. Functionalized iron oxide particles can assemble along the direction of applied magnetic field, and the directional dependence of the assembled iron oxide particles can be utilized for device purposes. We report here how such functionalized magnetic particles are used to modulate the bioelectrocatalytic signal by changing the orientation of the applied magnetic field. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A promising method for assembling carbon nanotubes (CNTs) and poly(diallyldimethylammonium chloride) protected Prussian blue nanoparticles (P-PB) to form three-dimensional (3D) nanostructured films is proposed. The electrostatic interaction, combined with layer-by-layer self-assembly (LBL), between negatively charged CNTs and positively charged P-PB is strong enough to drive the formation of the 3D nanostructured films. Thus, prepared multilayer films were characterized by ultraviolet-visible-near-infrared spectroscopy (UV-vis-NIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glucose oxidase and laccase immobilized at multiwalled carbon nanotubes-ionic liquid gel modified electrodes are used as the catalysts of anode and cathode of biofuel cells (BFCs), respectively. The BFC based on glucose and air is proposed. When ferrocene monocarboxylic acid is adopted as the mediator of anode, the power output of the BFC is ca. 4.1 mu W (power density ca. 10.0 mu W cm(-2)), which is higher than the value of 2.7 mu W (power density ca. 6.6 mu W cm(-2)) by taking ferrocene dicarboxylic acid as the mediator. This implies that the mediator with formal potential closing to that of the enzyme does improve the power output. Furthermore, the power output of the BFC is greatly improved by taking grape juice as the fuel of anode rather than glucose. This system also indicates that grape juice as a fuel of the BFC not only is feasible and can also enhances the power output of the BFCs. Besides, it greatly lowers the cost and simplifies the preparation procedure of the BFCs, making the BFC towards "green" bioenergy.