457 resultados para GLUCOCORTICOID
Resumo:
Liver receptor homolog-1 (LRH-1) is a nuclear receptor involved in intestinal lipid homeostasis and cell proliferation. Here we show that haploinsufficiency of LRH-1 predisposes mice to the development of intestinal inflammation. Besides the increased inflammatory response, LRH-1 heterozygous mice exposed to 2,4,6-trinitrobenzene sulfonic acid show lower local corticosterone production as a result of an impaired intestinal expression of the enzymes CYP11A1 and CYP11B1, which control the local synthesis of corticosterone in the intestine. Local glucocorticoid production is strictly enterocyte-dependent because it is robustly reduced in epithelium-specific LRH-1-deficient mice. Consistent with these findings, colon biopsies of patients with Crohn's disease and ulcerative colitis show reduced expression of LRH-1 and genes involved in the production of glucocorticoids. Hence, LRH-1 regulates intestinal immunity in response to immunological stress by triggering local glucocorticoid production. These findings underscore the importance of LRH-1 in the control of intestinal inflammation and the pathogenesis of inflammatory bowel disease.
Resumo:
Glucocorticoids play a pivotal role in the regulation of most essential physiological processes, including energy metabolism, maintenance of electrolyte balance and blood pressure, immune-modulation and stress responses, cell proliferation and differentiation, as well as regulation of memory and cognitive functions. There are several levels at which glucocorticoid action can be modulated. On a tissue-specific level, glucocorticoid action is tightly controlled by 11beta-hydroxysteroid dehydrogenase (11beta-HSD) enzymes. The conversion of inactive 11-ketoglucocorticoids (cortisone and 11-dehydrocorticosterone) into active 11beta-hydroxyglucocorticoids (cortisol and corticosterone) is catalyzed by 11beta-HSD1, which is expressed in many tissues and plays an important role in metabolically relevant tissues such as the liver, adipose tissue and skeletal muscles. Chronically elevated local glucocorticoid action as a result of increased 11beta-HSD1 activity rather than elevated systemic glucocorticoid levels has been associated with metabolic syndrome, which is characterized by obesity, insulin resistance, type 2 diabetes and cardiovascular complications. Recent studies indicate that compounds inhibiting 11beta-HSD1 activity ameliorate the adverse effects of excessive glucocorticoid concentrations on metabolic processes, providing promising opportunities for the development of therapeutic interventions. This review addresses recent findings relevant for the development and application of therapeutically useful compounds that modulate 11beta-HSD1 function.
Resumo:
Glucocorticoids are anti-inflammatory steroids with important applications in the treatment of inflammatory diseases. Endogenous glucocorticoids are mainly produced by the adrenal glands, although there is increasing evidence for extra-adrenal sources. Recent findings show that intestinal crypt cells produce glucocorticoids, which contribute to the maintenance of intestinal immune homeostasis. Intestinal glucocorticoid synthesis is critically regulated by the transcription factor liver receptor homologue-1 (LRH-1). As expression of steroidogenic enzymes and LRH-1 is restricted to the proliferating cells of the crypts, we aimed to investigate the role of the cell cycle in the regulation of LRH-1 activity and intestinal glucocorticoid synthesis. We here show that either pharmacological or molecular modulation of cell cycle progression significantly inhibited expression of steroidogenic enzymes and synthesis of glucocorticoids in intestinal epithelial cells. Synchronization of intestinal epithelial cells in the cell cycle revealed that expression of steroidogenic enzymes is preferentially induced at the G(1)/S stage. Differentiation of immature intestinal epithelial cells to mature nonproliferating cells also resulted in reduced expression of steroidogenic enzymes. This cell cycle-related effect on intestinal steroidogenesis was found to be mediated through the regulation of LRH-1 transcriptional activity. This mechanism may restrict intestinal glucocorticoid synthesis to the proliferating cells of the crypts.
Resumo:
The hypothalamo-pituitary-adrenal axis shows functional changes in alcoholics, with raised glucocorticoid release during alcohol intake and during the initial phase of alcohol withdrawal. Raised glucocorticoid concentrations are known to cause neuronal damage after withdrawal from chronic alcohol consumption and in other conditions. The hypothesis for these studies was that chronic alcohol treatment would have differential effects on corticosterone concentrations in plasma and in brain regions. Effects of chronic alcohol and withdrawal on regional brain corticosterone concentrations were examined using a range of standard chronic alcohol treatments in two strains of mice and in rats. Corticosterone was measured by radioimmunoassay and the identity of the corticosterone extracted from brain was verified by high performance liquid chromatography and mass spectrometry. Withdrawal from long term (3 weeks to 8 months) alcohol consumption induced prolonged increases in glucocorticoid concentrations in specific regions of rodent brain, while plasma concentrations remained unchanged. This effect was seen after alcohol administration via drinking fluid or by liquid diet, in both mice and rats and in both genders. Shorter alcohol treatments did not show the selective effect on brain glucocorticoid levels. During the alcohol consumption the regional brain corticosterone concentrations paralleled the plasma concentrations. Type II glucocorticoid receptor availability in prefrontal cortex was decreased after withdrawal from chronic alcohol consumption and nuclear localization of glucocorticoid receptors was increased, a pattern that would be predicted from enhanced glucocorticoid type II receptor activation. This novel observation of prolonged selective increases in brain glucocorticoid activity could explain important consequences of long term alcohol consumption, including memory loss, dependence and lack of hypothalamo-pituitary responsiveness. Local changes in brain glucocorticoid levels may also need to be considered in the genesis of other mental disorders and could form a potential new therapeutic target.
Resumo:
BACKGROUND: Studies were carried out to test the hypothesis that administration of a glucocorticoid Type II receptor antagonist, mifepristone (RU38486), just prior to withdrawal from chronic alcohol treatment, would prevent the consequences of the alcohol consumption and withdrawal in mice. MATERIALS AND METHODS: The effects of administration of a single intraperitoneal dose of mifepristone were examined on alcohol withdrawal hyperexcitability. Memory deficits during the abstinence phase were measured using repeat exposure to the elevated plus maze, the object recognition test, and the odor habituation/discrimination test. Neurotoxicity in the hippocampus and prefrontal cortex was examined using NeuN staining. RESULTS: Mifepristone reduced, though did not prevent, the behavioral hyperexcitability seen in TO strain mice during the acute phase of alcohol withdrawal (4 hours to 8 hours after cessation of alcohol consumption) following chronic alcohol treatment via liquid diet. There were no alterations in anxiety-related behavior in these mice at 1 week into withdrawal, as measured using the elevated plus maze. However, changes in behavior during a second exposure to the elevated plus maze 1 week later were significantly reduced by the administration of mifepristone prior to withdrawal, indicating a reduction in the memory deficits caused by the chronic alcohol treatment and withdrawal. The object recognition test and the odor habituation and discrimination test were then used to measure memory deficits in more detail, at between 1 and 2 weeks after alcohol withdrawal in C57/BL10 strain mice given alcohol chronically via the drinking fluid. A single dose of mifepristone given at the time of alcohol withdrawal significantly reduced the memory deficits in both tests. NeuN staining showed no evidence of neuronal loss in either prefrontal cortex or hippocampus after withdrawal from chronic alcohol treatment. CONCLUSIONS: The results suggest mifepristone may be of value in the treatment of alcoholics to reduce their cognitive deficits.
Resumo:
BACKGROUND: Organotins are highly toxic and widely distributed environmental chemicals. Dibutyltin (DBT) is used as stabilizer in the production of polyvinyl chloride plastics, and it is also the major metabolite formed from tributyltin (TBT) in vivo. DBT is immunotoxic, however, the responsible targets remain to be defined. Due to the importance of glucocorticoids in immune-modulation, we investigated whether DBT could interfere with glucocorticoid receptor (GR) function. METHODOLOGY: We used HEK-293 cells transiently transfected with human GR as well as rat H4IIE hepatoma cells and native human macrophages and human THP-1 macrophages expressing endogenous receptor to study organotin effects on GR function. Docking of organotins was used to investigate the binding mechanism. PRINCIPAL FINDINGS: We found that nanomolar concentrations of DBT, but not other organotins tested, inhibit ligand binding to GR and its transcriptional activity. Docking analysis indicated that DBT inhibits GR activation allosterically by inserting into a site close to the steroid-binding pocket, which disrupts a key interaction between the A-ring of the glucocorticoid and the GR. DBT inhibited glucocorticoid-induced expression of phosphoenolpyruvate carboxykinase (PEPCK) and tyrosine-aminotransferase (TAT) and abolished the glucocorticoid-mediated transrepression of TNF-alpha-induced NF-kappaB activity. Moreover, DBT abrogated the glucocorticoid-mediated suppression of interleukin-6 (IL-6) and TNF-alpha production in lipopolysaccharide (LPS)-stimulated native human macrophages and human THP-1 macrophages. CONCLUSIONS: DBT inhibits ligand binding to GR and subsequent activation of the receptor. By blocking GR activation, DBT may disturb metabolic functions and modulation of the immune system, providing an explanation for some of the toxic effects of this organotin.
Resumo:
Glucocorticoids (GC) are lipophilic hormones commonly used as therapeutics in acute and chronic inflammatory disorders such as inflammatory bowel disease due to their attributed anti-inflammatory and immunosuppressive actions. Although the adrenal glands are the major source of endogenous GC, there is increasing evidence for the production of extra-adrenal GC in the brain, thymus, skin, vasculature, and the intestine. However, the physiological relevance of extra-adrenal-produced GC remains still ambiguous. Therefore, this review attracts attention to discuss possible biological benefits of extra-adrenal-synthesized GC, especially focusing on the impact of locally synthesized GC in the regulation of intestinal immune responses.
Resumo:
Glucocorticoids (GC) represent the most commonly used drugs for the treatment of acute and chronic inflammatory skin diseases. However, the topical long-term therapy of GC is limited by the occurrence of skin atrophy. Most interestingly, although GC inhibit proliferation of human fibroblasts, they exert a pronounced anti-apoptopic action. In the present study, we further elucidated the molecular mechanism of the GC dexamethasone (Dex) to protect human fibroblasts from programmed cell death. Dex not only significantly alters the expression of the cytosolic isoenzyme sphingosine kinase 1 but also initiated an enhanced intracellular formation of the sphingolipid sphingosine 1-phosphate (S1P). Investigations using S1P (3) ((-/-)) -fibroblasts revealed that this S1P-receptor subtype is essential for the Dex-induced cytoprotection. Moreover, we demonstrate that the ATP-binding cassette (ABC)-transporter ABCC1 is upregulated by Dex and may represent a crucial carrier to transport S1P from the cytosol to the S1P(3)-receptor subtype.
Resumo:
Annexin-1 (ANXA1) is a mediator of the anti-inflammatory actions of endogenous and exogenous glucocorticoids (GC). The mechanism of ANXA1 effects on cytokine production in macrophages is unknown and is here investigated in vivo and in vitro. In response to LPS administration, ANXA1(-/-) mice exhibited significantly increased serum IL-6 and TNF compared with wild-type (WT) controls. Similarly, LPS-induced IL-6 and TNF were significantly greater in ANXA1(-/-) than in WT peritoneal macrophages in vitro. In addition, deficiency of ANXA1 was associated with impairment of the inhibitory effects of dexamethasone (DEX) on LPS-induced IL-6 and TNF in macrophages. Increased LPS-induced cytokine expression in the absence of ANXA1 was accompanied by significantly increased LPS-induced activation of ERK and JNK MAPK and was abrogated by inhibition of either of these pathways. No differences in GC effects on MAPK or MAPK phosphatase 1 were observed in ANXA1(-/-) cells. In contrast, GC-induced expression of the regulatory protein GILZ was significantly reduced in ANXA1(-/-) cells by silencing of ANXA1 in WT cells and in macrophages of ANXA1(-/-) mice in vivo. GC-induced GILZ expression and GC inhibition of NF-kappaB activation were restored by expression of ANXA1 in ANXA1(-/-) cells, and GILZ overexpression in ANXA1(-/-) macrophages reduced ERK MAPK phosphorylation and restored sensitivity of cytokine expression and NF-kappaB activation to GC. These data confirm ANXA1 as a key inhibitor of macrophage cytokine expression and identify GILZ as a previously unrecognized mechanism of the anti-inflammatory effects of ANXA1.
Resumo:
Vitamin A is a nutrient with remarkable effects on adipose tissue and skeletal muscles, and plays a role in controlling energy balance. Retinoic acid (RA), the carboxylic form of vitamin A, has been associated with improved glucose tolerance and insulin sensitivity. In contrast, elevated glucocorticoids have been implicated in the development of insulin resistance and impaired glucose tolerance. Here, we investigated whether RA might counteract glucocorticoid effects in skeletal muscle cells by lowering 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1)-dependent local glucocorticoid activation and/or activation of glucocorticoid receptor (GR). We found a dose-dependent down-regulation of 11beta-HSD1 mRNA expression and activity upon incubation of fully differentiated mouse C2C12 myotubes with RA. In addition, RA inhibited GR transactivation by an 11beta-HSD1-independent mechanism. The presence of RA during myogenesis did not prevent myotube formation but resulted in relatively glucocorticoid-resistant myotubes, exhibiting very low 11beta-HSD1 expression and GR activity. The use of selective retinoic acid receptor (RAR) and retinoid X receptor ligands provided evidence that these effects were mediated through RARgamma. Importantly, short hairpin RNA against RARgamma abolished the effect of RA on 11beta-HSD1 and GR. In conclusion, we provide evidence for an important role of RA in the control of glucocorticoid activity during myogenesis and in myotubes. Disturbances of the nutrient and hormonal regulation of glucocorticoid action in skeletal muscles might be relevant for metabolic diseases.
Resumo:
Glucocorticoids are often applied in neonatology and perinatology to fight the problems of respiratory distress and chronic lung disease. There are, however, many controversies regarding the adverse side effects and long-term clinical benefits of this therapeutic approach. In rats, glucocorticoids are known to seriously impair the formation of alveoli when applied during the first two postnatal weeks even at very low dosage. The current study investigates short-term and long-term glucocorticoid effects on the rat lung by means of morphologic and morphometric observations at light and electron microscopic levels. Application of a high-dosage protocol for only few days resulted in a marked acceleration of lung development with a precocious microvascular maturation resulting in single capillary network septa in the first 4 postnatal days. By postnatal d 10, the lung morphologic phenotype showed a step back in the maturational state, with an increased number of septa with double capillary layer, followed by an exceptional second round of the alveolarization process. As a result of this process, there was an almost complete recovery in the parenchymal lung structure by postnatal d 36, and by d 60, there were virtually no qualitative or quantitative differences between experimental and control rats. These findings indicate that both dosage and duration of glucocorticoid therapy in the early postnatal period are very critical with respect to lung development and maturation and that a careful therapeutic strategy can minimize late sequelae of treatment.
Resumo:
Bone mass, bone geometry and its changes are based on trabecular and cortical bone remodeling. Whereas the effects of estrogen loss, rheumatoid arthritis (RA), glucocorticoid (GC) and bisphosphonate (BP) on trabecular bone remodeling have been well described, the effects of these conditions on the cortical bone geometry are less known. The present review will report current knowledge on the effects of RA, GC and BP on cortical bone geometry and its clinical relevance. Estrogen deficiency, RA and systemic GC lead to enhanced endosteal bone resorption. While in estrogen deficiency and under GC therapy endosteal resorption is insufficiently compensated by periosteal apposition, RA is associated with some periosteal bone apposition resulting in a maintained load-bearing capacity and stiffness. In contrast, BP treatment leads to filling of endosteal bone cavities at the epiphysis; however, periosteal apposition at the bone shaft seems to be suppressed. In summary, estrogen loss, RA and GC show similar effects on endosteal bone remodeling with an increase in bone resorption, whereas their effect on periosteal bone remodeling may differ. Despite over 50 years of GC therapy and over 25 years of PB therapy, there is still need for better understanding of the skeletal effects of these drugs as well as of inflammatory disease such as RA on cortical bone remodeling.
Resumo:
Epithelial cell polarization involves several kinase signaling cascades that eventually divide the surface membrane into an apical and a basolateral part. One kinase, which is activated during the polarization process, is phosphoinositide 3-kinase (PI3K). In MDCK cells, the basolateral potassium channel Kv7.1 requires PI3K activity for surface-expression during the polarization process. Here, we demonstrate that Kv7.1 surface expression requires tonic PI3K activity as PI3K inhibition triggers endocytosis of these channels in polarized MDCK. Pharmacological inhibition of SGK1 gave similar results as PI3K inhibition, whereas overexpression of constitutively active SGK1 overruled it, suggesting that SGK1 is the primary downstream target of PI3K in this process. Furthermore, knockdown of the ubiquitin ligase Nedd4-2 overruled PI3K inhibition, whereas a Nedd4-2 interaction-deficient Kv7.1 mutant was resistant to both PI3K and SGK1 inhibition. Altogether, these data suggest that a PI3K-SGK1 pathway stabilizes Kv7.1 surface expression by inhibiting Nedd4-2-dependent endocytosis and thereby demonstrates that Nedd4-2 is a key regulator of Kv7.1 localization and turnover in epithelial cells.