916 resultados para GHG MITIGATION
Resumo:
Synchronization issues pose a big challenge in cooperative communications. The benefits of cooperative diversity could be easily undone by improper synchronization. The problem arises because it would be difficult, from a complexity perspective, for multiple transmitting nodes to synchronize to a single receiver. For OFDM based systems, loss of performance due to imperfect carrier synchronization is severe, since it results in inter-carrier interference (ICI). The use of space-time/space-frequency codes from orthogonal designs are attractive for cooperative encoding. But orthogonal designs suffer from inter-symbol interference (ISI) due to the violation of quasi-static assumption, which can arise due to frequency- or time-selectivity of the channel. In this paper, we are concerned with combating the effects of i) ICI induced by carrier frequency offsets (CFO), and ii) ISI induced by frequency selectivity of the channel, in a cooperative communication scheme using space-frequency block coded (SFBC) OFDM. Specifically, we present an iterative interference cancellation (IC) algorithm to combat the ISI and ICI effects. The proposed algorithm could be applied to any orthogonal or quasi-orthogonal designs in cooperative SFBC OFDM schemes.
Resumo:
Agriculture’s contribution to climate change is controversial as it is a significant source of greenhouse gases but also a sink of carbon. Hence its economic and technological potential to mitigate climate change have been argued to be noteworthy. However, social profitability of emission mitigation is a result from factors among emission reductions such as surface water quality impact or profit from production. Consequently, to value comprehensive results of agricultural climate emission mitigation practices, these co-effects to environment and economics should be taken into account. The objective of this thesis was to develop an integrated economic and ecological model to analyse the social welfare of crop cultivation in Finland on distinctive cultivation technologies, conventional tillage and conservation tillage (no-till). Further, we ask whether it would be privately or socially profitable to allocate some of barley cultivation for alternative land use, such as green set-aside or afforestation, when production costs, GHG’s and water quality impacts are taken into account. In the theoretical framework we depict the optimal input use and land allocation choices in terms of environmental impacts and profit from production and derive the optimal tax and payment policies for climate and water quality friendly land allocation. The empirical application of the model uses Finnish data about production cost and profit structure and environmental impacts. According to our results, given emission mitigation practices are not self-evidently beneficial for farmers or society. On the contrary, in some cases alternative land allocation could even reduce social welfare, profiting conventional crop cultivation. This is the case regarding mineral soils such as clay and silt soils. On organic agricultural soils, climate mitigation practices, in this case afforestation and green fallow give more promising results, decreasing climate emissions and nutrient runoff to water systems. No-till technology does not seem to profit climate mitigation although it does decrease other environmental impacts. Nevertheless, the data behind climate emission mitigation practices impact to production and climate is limited and partly contradictory. More specific experiment studies on interaction of emission mitigation practices and environment would be needed. Further study would be important. Particularly area specific production and environmental factors and also food security and safety and socio-economic impacts should be taken into account.
Resumo:
The Clean Development Mechanism (CDM), Article 12 of the Kyoto Protocol allows Afforestation and Reforestation (A/R) projects as mitigation activities to offset the CO2 in the atmosphere whilst simultaneously seeking to ensure sustainable development for the host country. The Kyoto Protocol was ratified by the Government of India in August 2002 and one of India's objectives in acceding to the Protocol was to fulfil the prerequisites for implementation of projects under the CDM in accordance with national sustainable priorities. The objective of this paper is to assess the effectiveness of using large-scale forestry projects under the CDM in achieving its twin goals using Karnataka State as a case study. The Generalized Comprehensive Mitigation Assessment Process (GCOMAP) Model is used to observe the effect of varying carbon prices on the land available for A/R projects. The model is coupled with outputs from the Lund-Potsdam-Jena (LPJ) Dynamic Global Vegetation Model to incorporate the impacts of temperature rise due to climate change under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2, A1B and B1. With rising temperatures and CO2, vegetation productivity is increased under A2 and A1B scenarios and reduced under B1. Results indicate that higher carbon price paths produce higher gains in carbon credits and accelerate the rate at which available land hits maximum capacity thus acting as either an incentive or disincentive for landowners to commit their lands to forestry mitigation projects. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Yhteenveto: Maatalouden aiheuttama vesistönkuormitus ja sen vähentäminen
Resumo:
Present in situ chemical treatment technologies for mitigation of petroleum hydrocarbon contamination are in the developmental stage or being tested. To devise efficient strategies for restricting the movement of petroleum hydrocarbon (PHC) molecules in the contaminated soil, it is proposed to utilize the sorption–interaction relationships between the petroleum contaminants and the soil substrate. The basic questions addressed in this paper are as follows (i) What are the prominent chemical constituents of the various petroleum fractions that interact with the soil substrate? (ii) What are the functional groups of a soil that interact with the contaminants? (iii) What are the bonding mechanisms possible between the soil functional groups and the PHC contaminants? (iv) What are the consequent changes brought about the soil physical properties on interaction with PHC's? (v) What are the factors influencing the interactions between PHC molecules and clay particles of the soil substrate? (vi) What is the possibility of improving the soil's attenuation ability for PHC's? The development of answers to the basic questions reveal that petroleum hydrocarbons comprise a mixture of nonpolar alkanes and aromatic and polycyclic hydrocarbons, that have limited solubility in water. The bonding mechanism between the nonpolar PHC's and the clay surface is by way of van der Waals attraction. The adsorption of the nonpolar hydrocarbons by the clay surface occurs only when their (i.e., the hydrocarbon molecules) solubility in water is exceeded and the hydrocarbons exist in the micellar form. Dilute solutions of hydrocarbons in water, i.e., concentrations of hydrocarbons at or below the solubility limit, have no effect on the hydraulic conductivity of clay soils. Permeation with pure hydrocarbons invariably influences the clay hydraulic conductivity. To improve the attenuation ability of soils towards PHC's, it is proposed to coat the soil surface with "ultra" heavy organic polymers. Adsorption of organic polymers by the clay surface may change the surface properties of the soil from highly hydrophilic (having affinity for water molecules) to organophilic (having affinity for organic molecules). The organic polymers attached to the clay surface are expected to attenuate the PHC molecules by van der Waals attraction, by hydrogen bonding, and also by adsorption into interlayer space in the case of soils containing swelling clays.
Resumo:
Climate change is projected to impact forest ecosystems, including biodiversity and Net Primary Productivity (NPP). National level carbon forest sector mitigation potential estimates are available for India; however impacts of projected climate change are not included in the mitigation potential estimates. Change in NPP (in gC/m(2)/yr) is taken to represent the impacts of climate change. Long term impacts of climate change (2085) on the NPP of Indian forests are available; however no such regional estimates are available for short and medium terms. The present study based on GCM climatology scenarios projects the short, medium and long term impacts of climate change on forest ecosystems especially on NPP using BIOME4 vegetation model. We estimate that under A2 scenario by the year 2030 the NPP changes by (-5) to 40% across different agro-ecological zones (AEZ). By 2050 it increases by 15% to 59% and by 2070 it increases by 34 to 84%. However, under B2 scenario it increases only by 3 to 25%, 3.5 to 34% and (-2.5) to 38% respectively, in the same time periods. The cumulative mitigation potential is estimated to increase by up to 21% (by nearly 1 GtC) under A2 scenario between the years 2008 and 2108, whereas, under B2 the mitigation potential increases only by 14% (646 MtC). However, cumulative mitigation potential estimates obtained from IBIS-a dynamic global vegetation model suggest much smaller gains, where mitigation potential increases by only 6% and 5% during the period 2008 to 2108.
Resumo:
Mechanisms that control the volume changes behavior of foundation soils are well understood. The changes that occur in the behavior of soil due to migration of pollutants are not well understood. The extent of changes that occur in the presence of small concentration of contaminants can be predicted based on changes in the thickness of double layer and associated fabric changes. Interactions that occur with strong contaminants depends on the type of soil, type and concentration of contamination and duration of interaction etc It has been shown that different concentrations (1N and 4N) of sodium hydroxide solution causes abnormal changes on volume change behaviour of soil due to mineralogical changes. An attempt is made in this paper to stabilize contaminated soil using fly ash, after establishing its stability in alkali solutions. It was found that the effectiveness of fly ash to control the alkali induced heave increases with fly ash content incorporated into the soil. X-ray diffraction studies reveal that the mineralogical changes that occur in soil due to alkali interaction are inhibited by the presence of fly ash.
Resumo:
Carbon footprint (CF) refers to the total amount of carbon dioxide and its equivalents emitted due to various anthropogenic activities. Carbon emission and sequestration inventories have been reviewed sector-wise for all federal states in India to identify the sectors and regions responsible for carbon imbalances. This would help in implementing appropriate climate change mitigation and management strategies at disaggregated levels. Major sectors of carbon emissions in India are through electricity generation, transport, domestic energy consumption, industries and agriculture. A majority of carbon storage occurs in forest biomass and soil. This paper focuses on the statewise carbon emissions (CO2. CO and CH4), using region specific emission factors and statewise carbon sequestration capacity. The estimate shows that CO2, CO and CH4 emissions from India are 965.9, 22.5 and 16.9 Tg per year, respectively. Electricity generation contributes 35.5% of total CO2 emission, which is followed by the contribution from transport. Vehicular transport exclusively contributes 25.5% of total emission. The analysis shows that Maharashtra emits higher CO2, followed by Andhra Pradesh, Uttar Pradesh, Gujarat, Tamil Nadu and West Bengal. The carbon status, which is the ratio of annual carbon storage against carbon emission, for each federal state is computed. This shows that small states and union territories (UT) like Arunachal Pradesh, Mizoram and Andaman and Nicobar Islands, where carbon sequestration is higher due to good vegetation cover, have carbon status > 1. Annually, 7.35% of total carbon emissions get stored either in forest biomass or soil, out of which 34% is in Arunachal Pradesh, Madhya Pradesh, Chhattisgarh and Orissa. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a simple single-phase grid-connected photovoltaic (PV) inverter topology consisting of a boost section, a low-voltage single-phase inverter with an inductive filter, and a step-up transformer interfacing the grid is considered. Ideally, this topology will not inject any lower order harmonics into the grid due to high-frequency pulse width modulation operation. However, the nonideal factors in the system such as core saturation-induced distorted magnetizing current of the transformer and the dead time of the inverter, etc., contribute to a significant amount of lower order harmonics in the grid current. A novel design of inverter current control that mitigates lower order harmonics is presented in this paper. An adaptive harmonic compensation technique and its design are proposed for the lower order harmonic compensation. In addition, a proportional-resonant-integral (PRI) controller and its design are also proposed. This controller eliminates the dc component in the control system, which introduces even harmonics in the grid current in the topology considered. The dynamics of the system due to the interaction between the PRI controller and the adaptive compensation scheme is also analyzed. The complete design has been validated with experimental results and good agreement with theoretical analysis of the overall system is observed.
Resumo:
Concentration of greenhouse gases (GHG) in the atmosphere has been increasing rapidly during the last century due to ever increasing anthropogenic activities resulting in significant increases in the temperature of the Earth causing global warming. Major sources of GHG are forests (due to human induced land cover changes leading to deforestation), power generation (burning of fossil fuels), transportation (burning fossil fuel), agriculture (livestock, farming, rice cultivation and burning of crop residues), water bodies (wetlands), industry and urban activities (building, construction, transport, solid and liquid waste). Aggregation of GHG (CO2 and non-CO2 gases), in terms of Carbon dioxide equivalent (CO(2)e), indicate the GHG footprint. GHG footprint is thus a measure of the impact of human activities on the environment in terms of the amount of greenhouse gases produced. This study focuses on accounting of the amount of three important greenhouses gases namely carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and thereby developing GHG footprint of the major cities in India. National GHG inventories have been used for quantification of sector-wise greenhouse gas emissions. Country specific emission factors are used where all the emission factors are available. Default emission factors from IPCC guidelines are used when there are no country specific emission factors. Emission of each greenhouse gas is estimated by multiplying fuel consumption by the corresponding emission factor. The current study estimates GHG footprint or GHG emissions (in terms of CO2 equivalent) for Indian major cities and explores the linkages with the population and GDP. GHG footprint (Aggregation of Carbon dioxide equivalent emissions of GHG's) of Delhi, Greater Mumbai, Kolkata, Chennai, Greater Bangalore, Hyderabad and Ahmedabad are found to be 38,633.2 Gg, 22,783.08 Gg, 14,812.10 Gg, 22,090.55 Gg, 19,796.5 Gg, 13,734.59 Gg and 91,24.45 Gg CO2 eq., respectively. The major contributors sectors are transportation sector (contributing 32%, 17.4%, 13.3%, 19.5%, 43.5%, 56.86% and 25%), domestic sector (contributing 30.26%, 37.2%, 42.78%, 39%, 21.6%, 17.05% and 27.9%) and industrial sector (contributing 7.9%, 7.9%, 17.66%, 20.25%, 1231%, 11.38% and 22.41%) of the total emissions in Delhi, Greater Mumbai, Kolkata, Chennai, Greater Bangalore, Hyderabad and Ahmedabad, respectively. Chennai emits 4.79 t of CO2 equivalent emissions per capita, the highest among all the cities followed by Kolkata which emits 3.29 t of CO2 equivalent emissions per capita. Also Chennai emits the highest CO2 equivalent emissions per GDP (2.55 t CO2 eq./Lakh Rs.) followed by Greater Bangalore which emits 2.18 t CO2 eq./Lakh Rs. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Tradeoffs are examined between mitigating black carbon (BC) and carbon dioxide (CO2) for limiting peak global mean warming, using the following set of methods. A two-box climate model is used to simulate temperatures of the atmosphere and ocean for different rates of mitigation. Mitigation rates for BC and CO2 are characterized by respective timescales for e-folding reduction in emissions intensity of gross global product. There are respective emissions models that force the box model. Lastly there is a simple economics model, with cost of mitigation varying inversely with emission intensity. Constant mitigation timescale corresponds to mitigation at a constant annual rate, for example an e-folding timescale of 40 years corresponds to 2.5% reduction each year. Discounted present cost depends only on respective mitigation timescale and respective mitigation cost at present levels of emission intensity. Least-cost mitigation is posed as choosing respective e-folding timescales, to minimize total mitigation cost under a temperature constraint (e.g. within 2 degrees C above preindustrial). Peak warming is more sensitive to mitigation timescale for CO2 than for BC. Therefore rapid mitigation of CO2 emission intensity is essential to limiting peak warming, but simultaneous mitigation of BC can reduce total mitigation expenditure. (c) 2015 Elsevier B.V. All rights reserved.