985 resultados para GEL PROCESS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

in the present study, we have prepared and evaluated the physical and chemical properties and catalytic activities of transition metal loaded sulfated titania via the sol-gel route. Sol-gel method is widely used for preparing porous materials having controlled properties and leads to the formation of oxide particles in nano range, which are spherical or interconnected to each other. Characterization using various physico-chemical techniques and a detailed study of acidic properties are also carried out. Some reactions of industrial importance such as Friedel-Crafts reaction, fen-butylation of phenol,Beckmann rearrangement of cyclohexanone oxime, nitration of phenol and photochemical degradation of methylene blue have been selected for catalytic activity study in the present venture. The work is organized into eight chapters

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polysilsesquioxanes containing methacrylate pendant groups were prepared by the sol-gel process through hydrolysis and condensation of (3-methacryloxypropyl)trimethoxysilane (MPTS) dissolved in a methanol/methyl methacrylate (MMA) mixture. The effects of different water, MMA, and methanol contents, as well as of pH, on the nanoscopic and local structures of the system, at advanced stages of the condensation reaction, were studied by small-angle X-ray scattering (SAXS) and (29)Si nuclear magnetic resonance (NMR) spectroscopy, respectively. SAXS results indicate that the nanoscopic features of the hybrid sol could be described by a hierarchical model composed of two levels, namely (i) silsesquioxane (SSQO) nanoparticles Surrounded by the methacrylate pendant groups and the methanol/MMA mixture. and (ii) aggregation zones or islands containing correlated SSQO nanoparticles, embedded in the liquid medium. The (29)Si NMR results Show that the inner Structures of SSQO nanoparticles produced at pH 1 and 3 were built Up of polyhedral structures. mainly cagelike octamers and small linear oligomers, respectively. Irrespective of MMA and methanol contents, for a [H(2)O]/[MPTS] ratio higher than or equal to 1, the SSQO nailoparticles produced at pH I exhibit an average condensation degree (CD approximate to 69-87%) and average radius of gyration (R(g) approximate to 2.5 angstrom) larger than those produced at pH 3 (CD approximate to 48-67% and R(g) approximate to 1.5 angstrom). Methanol appears to act as a redispersion agent, by decreasing the number of particles inside the aggregation zones, while the addition of MMA induces a swelling of the aggregation zones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, Ba(Zr(0.25)Ti(0.75))O(3) ceramic was prepared by solid-state reaction. This material was characterized by x-ray diffraction and Fourier transform Raman spectroscopy. The temperature dependent dielectric properties were investigated in the frequency range from 1 kHz to 1 MHz. The dielectric measurements indicated a diffuse phase transition. The broadening of the dielectric permittivity in the frequency range as well as its shifting at higher temperatures indicated a relaxor-like behaviour for this material. The diffusivity and the relaxation strength were estimated using the modified Curie-Weiss law. The optical properties were analysed by ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements at room temperature. The UV-vis spectrum indicated that the Ba(Zr(0.25)Ti(0.75))O(3) ceramic has an optical band gap of 2.98 eV. A blue PL emission was observed for this compound when excited with 350 nm wavelength. The polarity as well as the PL property of this material was attributed to the presence of polar [TiO(6)] distorted clusters into a globally cubic matrix.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the structural evolution of Y(0.9)Er(0.1)Al(3)(BO(3))(4) nanopowders using two soft chemistry routes, the sol-gel and the polymeric precursor methods. Differential scanning calorimetry, differential thermal analyses, thermogravimetric analyses, X-ray diffraction, Fourier-transform infrared, and Raman spectroscopy techniques have been used to study the chemical reactions between 700 and 1200 degrees C temperature range. From both methods the Y(0.9)Er(0.1)Al(3)(BO(3))(4) (Er:YAB) solid solution was obtained almost pure when the powdered samples were heat treated at 1150 degrees C. Based on the results, a schematic phase formation diagram of Er:YAB crystalline solid solution was proposed for powders from each method. The Er:YAB solid solution could be optimized by adding a small amount of boron oxide in excess to the Er:YAB nominal composition. The nanoparticles are obtained around 210 nm. Photoluminescence emission spectrum of the Er:YAB nanocrystalline powders was measured on the infrared region and the Stark components of the (4)I(13/2) and (4)I(15/2) levels were determined. Finally, for the first time the Raman spectrum of Y(0.9)Er(0.1)Al(3)(BO(3))(4) crystalline phase is also presented. (C) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pb(2)CrO(5) nanoparticles were embedded in an amorphous SiO(2) matrix by the sol-gel process. The pH and heat treatment effects were evaluated in terms of structural, microstructural and optical properties from Pb(2)CrO(5)/SiO(2) compounds. X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), and diffuse reflectance techniques were employed. Kubelka-Munk theory was used to calculate diffuse reflectance spectra that were compared to the experimental results. Finally, colorimetric coordinates of the Pb(2)CrO(5)/SiO(2) compounds were shown and discussed. In general, an acid pH initially dissolves Pb(2)CrO(5) nanoparticles and following heat treatment at 600 A degrees C crystallized into PbCrO(4) composition with grain size around 6 nm in SiO(2) matrix. No Pb(2)CrO(5) solubilization was observed for basic pH. These nanoparticles were incorporated in silica matrix showing a variety of color ranging from yellow to orange.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fluorescent AlPO(4) xerogels doped with different amounts of Rhodamine 6G (Rh6G) laser dye were prepared by a one-step sal-gel process. In addition, mesoporous AlPO(4) glasses obtained from undoped gels were loaded with different amounts of Rh6G by wet impregnation. Optical excitation and emission spectra of both series of samples show significant dependences on Rh6G concentration, revealing the influence of dye molecular aggregation. At comparable dye concentrations the aggregation effects are found to be significantly stronger in the gels than in the mesoporous glasses. This effect might be attributed to stronger interactions between the dye molecules and the glass matrix, resulting in more efficient dye dispersion in the latter. The interaction of Rh6G with the glassy AlPO(4) network has been probed by (27)Al and (31)P solid-state NMR techniques. New five- and six-coordinated aluminum environments have been observed and characterized by advanced solid-state NMR techniques probing (27)Al-(1)H and (27)Al-(31)P internuclear dipole couplings. The fractional area of these new Al sites is correlated with the combined fractional area of two new Q(3Al)((0)) and Q(2Al)((0)) phosphate species observed in the (31)P MAS NMR spectra. Based on this correlation as well as detailed composition dependent studies, we suggest that the new signals arise from the breakage of Al-O-P linkages associated with the insertion process. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nickel hydroxide can provide an outstanding cathode material in alkaline secondary batteries, however the progressive decrease of the charge capacity as a function of the number of oxidation/reduction cycles is a challenging problem to be solved. New improvements on the electrochemical properties of electrode materials can be achieved by exploiting the much better performance of alpha-nickel hydroxide. Such materials were obtained in a stable form by sol-gel method and characterized by thermogravimetric analyses, UV-Vis spectroscopy, X-ray diffractometry, scanning and transmission electron microscopy, cyclic voltammetry and electrochemical quartz crystal microbalance techniques. The results revealed not only the formation of the alpha-Ni(OH)(2) phase, but also a much better electrochemical reversibility and stability as compared with similar materials obtained by electrochemical precipitation method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The gas-phase ion/molecule reactions of F(-) and EtO(-) with Ge(OEt)(4) yield readily and exclusively pentacoordinated complexes XGe(OEt)(4)(-) (X = F, EtO) at pressures in the 10(-8) T range as observed by FT-ICR techniques. These hypervalent species are prone to undergo sequential fragmentations induced by infrared multiphoton excitation that lead to a variety of germyl and germanate anions. In the case of FGe(OEt)(4)(-), three primary competitive channels are observed in the IRMPD process that can be identified as (EtO)(3)GeO(-), F(EtO)(2)GeO(-) and (EtO)(3)Ge(-). Ab initio calculations have been carried out to characterize the primary fragmentation paths induced by IRMPD and the most favorable structure of the resulting anions. The gas-phase acidity of a number of these germanium-containing ions have been estimated by bracketing experiments and by theoretical calculations. Germanate anions such as (EtO)(3)GeO(-) undergo some interesting reactions with H(2)S to give rise to anions such as (EtO)(3)GeS(-) and (EtO)(2)Ge(OH)S(-). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the preparation and characterization of a solid polymer electrolyte based on amylopectin-rich starch plasticized with glycerol. The samples were characterized through ionic conductivity (sigma) measurements, scanning electron microscopy, thermal analysis, and spectroscopy in the UV-Vis-NIR region. The results showed that the highest sigma (1.1 x 10(-4) Scm(-1) at 30 degrees C) was obtained for the sample with n = [O]/[Li] = 6.5 ratio. In addition, the samples plasticized with 30-35 wt.% of glycerol presented high ionic conductivity, transparency and conduction stability. The ionic conductivity measurements as a function of lithium salt contents showed a maximum for n=6.5. The ionic conductivity as a function of time for amylopectin-rich starch plasticized with 30 wt.% of glycerol and containing [O]/[Li] = 10 showed conduction stability over 6 months (sigma similar to 3.01 x 10(-5) S cm(-1)). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The kinetics and the thermodynamics of electrochemical intercalation of lithium into CeO(2)-TiO(2) films prepared by the sol-gel process were studied by galvanostatic intermittent titration technique (GITT) as function of the depth of lithium intercalation. The open-circuit-potential versus x in Li(x)(CeO(2)-TiO(2)) curve consists of two straight lines with different slopes, one in the range of 0.03 <= x <= 0.09 and the other of 0.09 < x <= 0.15. The standard Gibbs energy for lithium intercalation Delta G(1)(0) was 6kJ/mol for x = 0.09 in Li(x)(CeO(2)-TiO(2)) at room temperature. The chemical diffusion coefficient value, D(Li+), of lithium intercalation into thin film oxide was 2.14.10(-11) cm(2)/s at x = 0.15, and the value of the component diffusion coefficient D(Li+),(k) was about one order of magnitude lower than the coefficient of chemical diffusion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single-phase perovskite structure Pb(1-x)Ba(x)TiO(3) thin films (x = 0.30, 0.50 and 0.70) were deposited on Pt/Ti/SiO(2)/Si substrates by the spin-coating technique. The dielectric study reveals that the thin films undergo a diffuse type ferroelectric phase transition, which shows a broad peak. An increase of the diffusivity degree with the increasing Barium contents was observed, and it was associated to a grain decrease in the studied composition range. The temperature dependence of the phonon frequencies was used to characterize the phase transition temperatures. Raman modes persist above tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted in terms of breakdown of the local cubic symmetry by chemical disorder. The absence of a well-defined transition temperature and the presence of broad bands in some interval temperature above FE-PE phase transition temperature Suggested a diffuse type phase transition. This result corroborates the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in these thin films. The leakage Current density of the PBT thin films was studied at different temperatures and the data follow the Schottky emission model. Through this analysis the Schottky barrier height values 0.75, 0.53 and 0.34 eV were obtained to the PBT70, PBT50 and PBT30 thin films, respectively. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work we use a plasma jet system with a hollow cathode to deposit thin TiO2 films on silicon substrates as alternative at sol-gel, PECVD, dip-coating e magnetron sputtering techniques. The cylindrical cathode, made from pure titanium, can be negatively polarized between 0 e 1200 V and supports an electrical current of up to 1 A. An Ar/O2 mixture, with a total flux of 20 sccm and an O2 percentage ranging between 0 and 30%, is passed through a cylindrical hole machined in the cathode. The plasma parameters and your influence on the properties of deposited TiO2 films and their deposition rate was studied. When discharge occurs, titanium atoms are sputtered/evaporated. They are transported by the jet and deposited on the Si substrates located on the substrate holder facing the plasma jet system at a distance ranging between10 and 50 mm from the cathode. The working pressure was 10-3 mbar and the deposition time was 10 -60 min. Deposited films were characterized by scanning electron microscopy and atomic force microscopy to check the film uniformity and morphology and by X-ray diffraction to analyze qualitatively the phases present. Also it is presented the new dispositive denominate ionizing cage, derived from the active screen plasma nitriding (ASPN), but based in hollow cathode effect, recently developed. In this process, the sample was involved in a cage, in which the cathodic potential was applied. The samples were placed on an insulator substrate holder, remaining in a floating potential, and then it was treated in reactive plasma in hollow cathode regime. Moreover, the edge effect was completely eliminated, since the plasma was formed on the cage and not directly onto the samples and uniformity layer was getting in all sampl

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the researches on preparation and test of nanostructured materials, titanium dioxide and zinc oxide have been the most frequent studied oxides. In order to extend their properties, composites have been prepared using three different methods: Polyol Method, Sol-gel Process and a combination of the two processes (hybrid process). Recent research showed best properties in composite materials than in pure oxides. In this work is presented the preparation and the structural characterization of ZnO-TiO2 composite nanostructures to be tested for their performance in electrocatalysis and in further trial on photovoltaic cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The metalic oxides have been studies due to differents applications as materials semiconductor in solar cells, catalysts, full cells and, resistors. Titanium dioxide (TiO2) has a high electric conductivity due to oxygen vacancies. The Ce(SO4)2.2H2O doped samples TiO2 and TiO2 pure was obtained sol-gel process, and characterized by X-ray diffractometry,thermal analysis, and impedance spectroscopy. The X-ray diffraction patterns for TiO2 pure samples shows at 700°C anatase phase is absent, and only the diffraction peaks of rutile phase are observed. However, the cerium doped samples only at 900°C rutile in the phase present with peaks of cerium dioxide (CeO2). The thermal analysis of the TiO2 pure and small concentration cerium doped samples show two steps weight loss corresponding to water of hydration and chemisorbed. To larger concentration cerium doped samples were observed two steps weight loss in the transformation of the doped cerium possible intermediate species and SO3. Finally, two steps weight loss the end products CeO2 and SO3 are formed. Analyse electric properties at different temperatures and concentration cerium doped samples have been investigated by impedance spectroscopy. It was observed that titanium, can be substituted by cerium, changing its electric properties, and increased thermal stability of TiO2 anatase structure

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The alginates are copolymers of 1→4-linked β-D-mannuronic acid (M) and α-Lguluronic acid (G) residues that are arranjed in a block structure along a linear chain. Titanium dioxide, TiO2, is a ceramic material and can exist in three distinct crystallography forms: anatase, brookite and rutile. composites of organic and inorganic materials have better properties than the components alone. Thus, this study aims to synthesize, characterize and analyze the composite NaAlg-TiO2 in the form of powder and film. The synthesis of composite powders was performed using the sol-gel process and obtain the composite film was performed using the slow evaporation process, then the composites were analyzed by infrared spectroscopy, fluorescence x ray, thermal analysis, attenuated total reflection (ATR), x ray diffraction and impedance spectroscopy. The X ray diffraction patterns of composite powders show that with increasing calcination temperature, there were no complete transition of rutile-anatase crystalline phase, since at all temperatures studied (300, 500, 700, 900 and 1100ºC) were observed peaks of anatase phase. Thermal analysis shows that at 400°C caused the decomposition of sodium alginate in sodium carbonate and above 600°C, we observe an exothermic peak related to the decomposition of sodium carbonate and in the presence of titanium dioxide becomes sodium titanate. The XRD results confirm the formation of sodium carbonate at 700ºC and the formation sodium titanate in the temperature range 900-1100ºC. The sodium titanate influenced the electrical properties of the material, because with increasing temperature there was a decrease in conductivity, probably due to the creation of Ti vacancies, since the sodium can induce the reduction of surface Ti4+ ions into Ti3+ species. The infrared spectra of the composites in the form of powder and film showed a small shift in the bands compared to the spectrum of pure alginate, indicating that these shifts, even small ones, have evidence of miscibility between the polymer and ceramic material