989 resultados para Fungal molecular biology.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies showed increased prevalence of respiratory symptoms and adverse changes in pulmonary function parameters in poultry workers, corroborating the increased exposure to risk factors, such as fungal load and their metabolites. This study aimed to determine the occupational exposure threat due to fungal contamination caused by the toxigenic isolates belonging to the complex of the species of Aspergillus flavus and also isolates fromAspergillus fumigatus species complex. The study was carried out in seven Portuguese poultries, using cultural and molecularmethodologies. For conventional/cultural methods, air, surfaces, and litter samples were collected by impaction method using the Millipore Air Sampler. For the molecular analysis, air samples were collected by impinger method using the Coriolis μ air sampler. After DNA extraction, samples were analyzed by real-time PCR using specific primers and probes for toxigenic strains of the Aspergillus flavus complex and for detection of isolates from Aspergillus fumigatus complex. Through conventional methods, and among the Aspergillus genus, different prevalences were detected regarding the presence of Aspergillus flavus and Aspergillus fumigatus species complexes, namely: 74.5 versus 1.0% in the air samples, 24.0 versus 16.0% in the surfaces, 0 versus 32.6% in new litter, and 9.9 versus 15.9%in used litter. Through molecular biology, we were able to detect the presence of aflatoxigenic strains in pavilions in which Aspergillus flavus did not grow in culture. Aspergillus fumigatus was only found in one indoor air sample by conventional methods. Using molecular methodologies, however, Aspergillus fumigatus complex was detected in seven indoor samples from three different poultry units. The characterization of fungal contamination caused by Aspergillus flavus and Aspergillus fumigatus raises the concern of occupational threat not only due to the detected fungal load but also because of the toxigenic potential of these species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The handling of waste and compost that occurs frequently in composting plants (compost turning, shredding, and screening) has been shown to be responsible for the release of dust and air borne microorganisms and their compounds in the air. Thermophilic fungi, such as A. fumigatus, have been reported and this kind of contamination in composting facilities has been associated with increased respiratory symptoms among compost workers. This study intended to characterize fungal contamination in a totally indoor composting plant located in Portugal. Besides conventional methods, molecular biology was also applied to overcome eventual limitations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phytopathogenic fungus Moniliophthora perniciosa (Stahel) Aime & Philips-Mora, causal agent of witches' broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11) that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR). Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the genetic and physiological variability of Moniliophthora perniciosa obtained from healthy and diseased branches of cacao (Theobroma cacao) plants. The diversity of the isolates was evaluated by RAPD technique and by studies of virulence and exoenzyme production. The genetic variability of endophytic and pathogenic M. perniciosa was evaluated in association with pathogenicity assays. RAPD analysis showed eight genetic groups, which were not related to plant disease status (healthy versus diseased branches). Isolates from cacao were included in three groups, excluding isolates from other host plants. Pathogenicity and enzyme analysis showed that the virulence of the isolates is not related to exoenzyme production. This is the first evidence that M. perniciosa colonizes healthy parenchymatic tissues, showing that endophytic behavior may occur in this species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uncertainty about the possible involvement of a luciferase in fungal bioluminescence has not only hindered the understanding of its biochemistry but also delayed the characterization of its constituents. The present report describes how in vitro light emission can be obtained enzymatically from the cold and hot extracts assay using different species of fungi, which also indicates a common mechanism for all these organisms. Kinetic data suggest a consecutive two-step enzymatic mechanism and corroborate the enzymatic proposal of Airth and Foerster. Finally, overlapping of light emission spectra from the fungal bioluminescence and the in vitro assay confirm that this reaction is the same one that occurs in live fungi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main results presented in this PhD Dissertation have been published in interna-tional journals included in the Science Citation Index (SCI)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 During a search for genes controlling conidial dormancy in Aspergillus fumigatus, two dehydrin-like genes, DprA and DprB, were identified. The deduced proteins had repeated stretches of 23 amino acids that contained a conserved dehydrin-like protein (DPR) motif. Disrupted DprAΔ mutants were hypersensitive to oxidative stress and to phagocytic killing, whereas DprBΔ mutants were impaired in osmotic and pH stress responses. However, no effect was observed on their pathogenicity in our experimental models of invasive aspergillosis. Molecular dissection of the signaling pathways acting upstream showed that expression of DprA was dependent on the stress-activated kinase SakA and the cyclic AMP-protein kinase A (cAMP-PKA) pathways, which activate the bZIP transcription factor AtfA, while expression of DprB was dependent on the SakA mitogen-activated protein kinase (MAPK) pathway, and the zinc finger transcription factor PacC. Fluorescent protein fusions showed that both proteins were associated with peroxisomes and the cytosol. Accordingly, DprA and DprB were important for peroxisome function. Our findings reveal a novel family of stress-protective proteins in A. fumigatus and, potentially, in filamentous ascomycetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARY : The arbuscular mycorrhizal (AM) symbiosis is an evolutionarily ancient association between most land plants and Glomeromycotan fungi that is based on the mutual exchange of nutrients between the two partners. Its structural and physiological establishment is a multi-step process involving a tightly regulated signal exchange leading to intracellular colonization of roots by the fungi. Most research on the molecular biology and genetics of symbiosis development has been performed in dicotyledonous model legumes. In these, a plant signaling pathway, the common SYM pathway, has been found to be required for accommodation of both root symbionts rhizobia and AM fungi. Rice, a monocotyledon model and the world's most important staple crop also forms AM symbioses, has been largely ignored for studies of the AM symbiosis. Therefore in this PhD work functional conservation of the common SYM pathway in rice was addressed and demonstrated. Mycorrhiza-specific marker genes were established that are expressed at different stages of AM development and therefore represent readouts for various AM-specific signaling events. These tools were successfully used to obtain evidence for a yet unknown signaling network comprising common SYM-dependent and -independent events. In legumes AM colonization induces common SYM signaling dependent changes in root system architecture. It was demonstrated that also in rice, root system architecture changes in response to AM colonization but these alterations occur independently of common SYM signaling. The rice root system is complex and contains three different root types. It was shown that root type identity influences the quantity of AM colonization, indicating root type specific symbiotic properties. Interestingly, the root types differed in their transcriptional responses to AM colonization and the less colonized root type responded more dramatically than the more strongly colonized root type. Finally, in an independent project a novel mutant, inhospitable (iho), was discovered. It is perturbed at the most early step of AM colonization, namely differentiation of the AM fungal hyphae into a hyphopodium at the root surface. As plant factors required for this early step are not known, identification of the IHO gene will greatly contribute to the advance of mycorrhiza RÉSUMÉ : La symbiose mycorhizienne arbusculaire (AM) est une association évolutionnairement ancienne entre la majorité des plantes terrestres et les champignons du type Glomeromycota, basée sur l'échange mutuel d'éléments nutritifs entre les deux partenaires. Son établissement structural et physiologique est un processus en plusieurs étapes, impliquant des échanges de signaux étroitement contrôlés, aboutissant à la colonisation intracellulaire des racines par le champignon. La plupart des recherches sur la biologie moléculaire et la génétique du développement de la symbiose ont été effectuées sur des légumineuses dicotylédones modèles. Dans ces dernières, une voie de signalisation, la voie SYM, s'est avérée nécessaire pour permettre la mise en place de la symbiose mycorhizienne. Chez les plantes monocotylédones, comme le riz, une des céréales les plus importantes, nourrissant la moitié de la population mondiale, peu de recherches ont été effectuées sur les bases de la cette symbiose. Dans ce travail de thèse, la conservation fonctionnelle de la voie commune SYM chez le riz a été étudiée et démontrée. De plus, des gènes marqueurs spécifiques des différentes étapes du développement de l'AM ont été identifiés, permettant ainsi d'avoir des traceurs de la colonisation. Ces outils ont été utilisés avec succès pour démontrer l'existence d'un nouveau réseau de signalisation, comprenant des éléments SYM dépendant et indépendant. Chez les légumineuses, la colonisation par les AM induit des changements dans l'architecture du système racinaire, via la signalisation SYM dépendantes. Cependant chez le riz, il a été démontré que l'architecture de système racinaire changeait suite à la colonisation de l'AM, mais ceux, de façon SYM indépendante. Le système racinaire du riz est complexe et contient trois types différents de racines. Il a été démontré que le type de racine pouvait influencer l'efficacité de la colonisation par l'AM, indiquant que les racines ont des propriétés symbiotiques spécifiques différentes. De façon surprenante, les divers types de racines répondent de différemment suite à colonisation par l'AM avec des changements de la expression des gènes. Le type de racine le moins colonisé, répondant le plus fortement a la colonisation, et inversement. En parallèle, dans un projet indépendant, un nouveau mutant, inhospitable (iho), a été identifié. Ce mutant est perturbé lors de l'étape la plus précoce de la colonisation par l'AM, à savoir la différentiation des hyphes fongiques de l'AM en hyphopodium, à la surface des racines. Les facteurs d'origine végétale requis pour cette étape étant encore inconnus, l'identification du gène IHO contribuera considérablement a accroître nos connaissance sur les bases de la mise en place de cette symbiose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When a bloodstream infection (BSI) is suspected, most of the laboratory results-biochemical and haematologic-are available within the first hours after hospital admission of the patient. This is not the case for diagnostic microbiology, which generally takes a longer time because blood culture, which is to date the reference standard for the documentation of the BSI microbial agents, relies on bacterial or fungal growth. The microbial diagnosis of BSI directly from blood has been proposed to speed the determination of the etiological agent but was limited by the very low number of circulating microbes during these paucibacterial infections. Thanks to recent advances in molecular biology, including the improvement of nucleic acid extraction and amplification, several PCR-based methods for the diagnosis of BSI directly from whole blood have emerged. In the present review, we discuss the advantages and limitations of these new molecular approaches, which at best complement the culture-based diagnosis of BSI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To further our understanding of powdery mildew biology during infection, we undertook a systematic shotgun proteomics analysis of the obligate biotroph Blumeria graminis f. sp. hordei at different stages of development in the host. Moreover we used a proteogenomics approach to feed information into the annotation of the newly sequenced genome. We analyzed and compared the proteomes from three stages of development representing different functions during the plant-dependent vegetative life cycle of this fungus. We identified 441 proteins in ungerminated spores, 775 proteins in epiphytic sporulating hyphae, and 47 proteins from haustoria inside barley leaf epidermal cells and used the data to aid annotation of the B. graminis f. sp. hordei genome. We also compared the differences in the protein complement of these key stages. Although confirming some of the previously reported findings and models derived from the analysis of transcriptome dynamics, our results also suggest that the intracellular haustoria are subject to stress possibly as a result of the plant defense strategy, including the production of reactive oxygen species. In addition, a number of small haustorial proteins with a predicted N-terminal signal peptide for secretion were identified in infected tissues: these represent candidate effector proteins that may play a role in controlling host metabolism and immunity. Molecular & Cellular Proteomics 8: 2368-2381, 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To further our understanding of powdery mildew biology during infection, we undertook a systematic shotgun proteomics analysis of the obligate biotroph Blumeria graminis f. sp. hordei at different stages of development in the host. Moreover we used a proteogenomics approach to feed information into the annotation of the newly sequenced genome. We analyzed and compared the proteomes from three stages of development representing different functions during the plant-dependent vegetative life cycle of this fungus. We identified 441 proteins in ungerminated spores, 775 proteins in epiphytic sporulating hyphae, and 47 proteins from haustoria inside barley leaf epidermal cells and used the data to aid annotation of the B. graminis f. sp. hordei genome. We also compared the differences in the protein complement of these key stages. Although confirming some of the previously reported findings and models derived from the analysis of transcriptome dynamics, our results also suggest that the intracellular haustoria are subject to stress possibly as a result of the plant defense strategy, including the production of reactive oxygen species. In addition, a number of small haustorial proteins with a predicted N-terminal signal peptide for secretion were identified in infected tissues: these represent candidate effector proteins that may play a role in controlling host metabolism and immunity. Molecular & Cellular Proteomics 8: 2368-2381, 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Candida albicans is the most common opportunistic fungal pathogen and causes local and systemic disease in immunocompromised patients. Alveolar macrophages (AMs) are pivotal for the clearance of C. albicans from the lung. Activated AMs secrete 5-lipoxygenase-derived leukotrienes (LTs), which in turn enhance phagocytosis and microbicidal activity against a diverse array of pathogens. Our aim was to investigate the role of LTB(4) and LTD(4) in AM antimicrobial functions against C. albicans and the signaling pathways involved. Pharmacologic and genetic inhibition of LT biosynthesis as well as receptor antagonism reduced phagocytosis of C. albicans when compared with untreated or WT controls. Conversely, exogenous LTs of both classes augmented base-line C. albicans phagocytosis by AMs. Although LTB(4) enhanced mainly mannose receptor-dependent fungal ingestion, LTD(4) enhanced mainly dectin-1 receptor-mediated phagocytosis. LT enhancement of yeast ingestion was dependent on protein kinase C-delta (PKC delta) and PI3K but not PKC alpha and MAPK activation. Both LTs reduced activation of cofilin-1, whereas they enhanced total cellular F-actin; however, LTB(4) accomplished this through the activation of LIM kinases (LIMKs) 1 and 2, whereas LTD(4) did so exclusively via LIMK-2. Finally, both exogenous LTB(4) and LTD(4) enhanced AM fungicidal activity in an NADPH oxidase-dependent manner. Our data identify LTB(4) and LTD(4) as key mediators of innate immunity against C. albicans, which act by both distinct and conserved signaling mechanisms to enhance multiple antimicrobial functions of AMs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isolated from the mycelium, of Scedosporium prolificans were complex glycoproteins (RMP-Sp), with three structurally related components (HPSEC). RMP-Sp contained 35% protein and 62% carbohydrate with Rha, Ara, Man, Gal, Glc, and GlcNH(2) in a 18:1:24:8:6:5 molar ratio. Methylation analysis showed mainly nonreducing end- of Galp (13%), nonreducing end- (9%),2-O-(13%), and 3-O-subst. Rhap (7%), nonreducing end-(11%), 2-O-(10%), 3-O-(14%), and 2,6-di-O-subst. Manp units (13%). Mild reductive P-elimination of RMP-Sp gave alpha-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->3)-alpha-D-Manp-(1-->2)-D-Man-ol, with Man-ol substituted at O-6 with beta-D-Galp units, a related pentasaccharide lacking beta-D-Galp units, and beta-D-Galp-(1-->6)-[alpha-D-Manp-(1-->2)]-D-Man-ol in a 16:3:1 w/w ratio. Traces of Man-ol and Rha-ol were detected. ESI-MS showed HexHex-o1 and HCX(3-6)Hex-ol components. Three rhamnosyl units were peeled off successively from the penta- and hexasaccharide by ESI-MS-MS. The carbohydrate epitopes of RMP-Sp differ from those of the glycoprotein of Pseudallescheria boydii, a related opportunistic pathogen. (C) 2007 Elsevier B.V. All rights reserved.