903 resultados para Funes, Patricia
Resumo:
En el ámbito de la investigación en Matemática Educativa son conocidas las dificultades que plantean la enseñanza y el aprendizaje de contenidos del cálculo. En la búsqueda de alternativas que favorezcan un desarrollo adecuado de métodos de pensamiento propios de la matemática, diseñamos y pusimos a prueba una secuencia didáctica para la introducción del concepto de derivada. Consideramos como hipótesis básica que el desarrollo de ideas variacionales puede propiciar una mejor comprensión y apropiación de esta noción, adoptando la posición de que el manejo de sistemas de representación es fundamental para la actividad cognoscitiva del pensamiento. Presentamos algunas de las actividades trabajadas en clase y un breve análisis sobre su implementación y las respuestas de los alumnos.
Resumo:
En este trabajo se presenta una aplicación del Análisis de Redes Sociales (ARS) al estudio de las relaciones entre alumnos de segundo año de una Escuela Técnica. El ARS se apoya en la teoría de grafos cuyo bagaje matemático permite analizar y medir, en términos generales, propiedades de las estructuras sociales en particular la escuela. La vida escolar es una trama compleja de factores que influirían en el rendimiento académico de los alumnos, tales como: tiempo de estudio que comparten, desde cuándo se conocen entre los compañeros, la proximidad de sus domicilios, sexo, edad, entre otros. Los factores sexo y edad no son relevantes dado que el grupo bajo estudio está formado por varones alrededor de los 16 años. En este trabajo se mostrarán los resultados obtenidos por el primer factor mencionado que fueron procesados a través de los software Ucinet 6 y Netdraw.
Resumo:
En el presente trabajo se comparte una experiencia de aula que se realiza, utilizando el Origami, para introducir el trabajo con funciones cuadráticas, con estudiantes de la media académica. En el proceso de iniciación al cálculo, se estudió la relación entre el plegado de papel y la geometría, al desarmar un módulo cuadrado y analizar las cicatrices que quedan en él. Se relacionaron algunos elementos matemáticos presentes en el módulo, con los conceptos matemáticos que emergieron en las cicatrices y se analizaron algunas propiedades de los poliedros. Esto permitió el estudio de conceptos como rectas paralelas y perpendiculares, bisectrices y mediatrices y familias de poliedros, relacionando el área lateral de los poliedros con el tamaño del módulo y con el número de éstos, lo que llevó al estudio de familias de funciones, haciendo el tránsito por diferentes sistemas semióticos de representación y al interior de algunos de estos, llevando a los mismos estudiantes a que le asignaran significado y sentido a los conceptos estudiados, al poderlos manipular.
Resumo:
Los mapas conceptuales se pueden emplear como una técnica de estudio y como una herramienta para el proceso de enseñanza y aprendizaje de las matemáticas, permitiendo al docente explorar los conocimientos previos que sus estudiantes tienen frente a un tema específico, favoreciendo la construcción de relaciones y organización de conceptos, fomentando la reflexión, el análisis y la creatividad. La implementación de los mapas conceptuales en investigaciones relacionadas con el aprendizaje y la enseñanza de las matemáticas, han mostrado que éstos ponen de manifiesto los procesos de razonamiento seguidos por el estudiante, evidenciando las conexiones entre los conceptos matemáticos que pueden dar lugar a proposiciones válidas o no válidas y a diferentes niveles jerárquicos, que a su vez, proporcionan una visión sobre el nivel de comprensión que poseen, tanto profesores como estudiantes, en dichos conceptos.
Resumo:
El presente trabajo tiene como objetivo principal observar y analizar el desarrollo del pensamiento variacional en estudiantes de los dos últimos años de bachillerato al intentar resolver situaciones problema que involucran situaciones funcionales de variación y cambio. Para ello se consideró el concepto de función como el objeto matemático que permite relacionar los conceptos matemáticos con otras áreas del currículo, planteados en situaciones de la vida real. Se consideraron dos grupos de trabajo, un grupo control y un grupo experimental; a ambos grupos se les aplicó un examen de reconocimiento, posteriormente, al grupo experimental se le aplicó una serie de talleres usando situaciones funcionales, enfatizando sobre su aplicabilidad en diferentes contextos y su relación con la vida real, finalmente se aplicó una prueba de contraste a ambos grupos de trabajo con el objeto de verificar los avances luego del trabajo en el aula.
Resumo:
La estrategia didáctica es uno de los resultados de la investigación que realiza el grupo de matemática educativa de la Universidad de Camagüey. Tiene como objetivo diseñar una estrategia didáctica para favorecer la formación y el desarrollo de la competencia organizar e interpretar el conocimiento matemático en los estudiantes de la carrera Ingeniería Informática de la Universidad de Camagüey. La misma centra sus resultados científicos fundamentales en un modelo teórico para la formación y desarrollo de la competencia organizar e interpretar el conocimiento matemático. En esta estrategia didáctica para favorecer la formación y el desarrollo de la competencia organizar e interpretar el conocimiento matemático en los estudiantes de la carrera Ingeniería Informática presenta un set de instrumentos e indicadores para evaluar la formación y el desarrollo de la competencia organizar e interpretar el conocimiento matemático. En el desarrollo de la investigación se utilizaron diferentes métodos, y la implementación se realizó en dos grupos de esta facultad con resultados satisfactorios. Con esta investigación se contribuye al Perfeccionamiento de la Educación Superior.
Resumo:
Las competencias matemáticas se refieren al dominio, por parte del estudiante, de los conocimientos, habilidades, valores y actitudes que son indispensables tanto para la comprensión del discurso de las ciencias, las humanidades y la tecnología, como para su aplicación en la solución de los problemas de su vida escolar, social y laboral. El objetivo del presente trabajo fue identificar los niveles de competencias matemáticas adquiridos cuando se promueve el estudio de contextos evocados introductorios, que permitan explorar diversas representaciones. La experiencia educativa se llevó a cabo con un grupo de 45 alumnos, del nivel medio superior que cursaban la asignatura de álgebra, y cuya duración fue de 18 semanas. El análisis de los datos permitió identificar tres niveles de Competencias Matemáticas.
Resumo:
Diferentes corrientes teóricas han intentado conocer cuáles son los factores que inciden en los procesos educativos, cuál es su relevancia y cómo podrían ser modificadas con la finalidad de obtener una mejor calidad en la educación. Fortalecer esta corriente de investigación en México es imprescindible. El objetivo de este trabajo es, identificar factores individuales, familiares y escolares incidentes en el nivel de logro académico en matemáticas de estudiantes de tercer año de secundaria. Se analizaran los resultados del examen de matemáticas propuesto por la Evaluación Nacional de Logro Académico en Centros Escolares (ENLACE). También se estudiaran los resultados de los cuestionarios de contexto que se aplicaron a una muestra representativa de estudiantes a sus profesores y a sus padres. Para ello se hará uso de Minería de Datos con el objetivo de encontrar relaciones ocultas entre las variables, sacar conclusiones y generar conocimiento a partir de estas.
Resumo:
Presentamos una discusión a partir de resultados alrededor del uso de las gráficas sobre qué es lo que un alumno ve al trabajar con una gráfica tiempo-distancia y las implicaciones de dicha visualización en la construcción del conocimiento matemático.
Resumo:
O objetivo dessa pesquisa é analisar os pontos de vista sobre a noção de derivada de uma função desenvolvida no Ensino Médio e que podem servir de apoio para a disciplina de Cálculo Diferencial e Integral no Ensino Superior. Para isso, escolhemos como referenciais teóricos centrais os pontos de vista de Thurston (1995) e a abordagem teórica em termos de pontos de vista de Rogalski (1995). Para melhor identificar as dificuldades associadas ao ensino e à aprendizagem da noção de derivada na transição Ensino Médio e Superior complementamos as análises utilizando as abordagens teóricas em termos de quadros de Douady (1984) e níveis de conhecimento de Robert(1997) e a teoria antropológica do didático de Bosch e Chevallard (1999). Os resultados encontrados mostram que pouca atenção é dada ao trabalho desenvolvido no Ensino Médio, não se levando em conta os conhecimentos prévios dos estudantes, o que pode justificar as dificuldades encontradas por esses nos primeiros anos do Ensino Superior.
Resumo:
Centrado na noção de níveis de conhecimento conforme definição de Robert (1997) apresentamos os resultados das análises sobre as possibilidades de articulação de quadros, representações semióticas e pontos de vista quando se consi era a abordagem da noção de função afim no Ensino Médio. Para tal identificamos as relações institucionais esperadas e existentes por meio da análise de documentos oficiais e livros didáticos e a relação pessoal desenvolvida por um grupo de estudantes do Ensino Médio de uma escola pública do estado de São Paulo. Os resultados encontrados colocam em evidência que existe uma preocupação institucional em se considerar a articulação entre os conhecimentos adquiridos no Ensino Fundamental e no decorrer do Ensino Médio. Apesar do trabalho desenvolvido institucionalmente, poucos estudantes do grupo analisado são capazes de desenvolver um trabalho onde essas articulações são necessárias.
Resumo:
En el presente escrito, se reportan los resultados de un trabajo de investigación a nivel licenciatura, el cual se centró en el estudio de comportamientos gráficos en funciones algebraicas y trigonométricas, específicamente en f(x)=x , f(x)=x^2 ,f(x)=x^3 , f(x)=sen(x) y f(x)=cos(x), así como las transformaciones de cada una, considerando la expresión Y=Cf(ax+c)+D, con la intención de realizar comparaciones gráficas entre las funciones originales y las transformadas, el propósito general fue analizar si la presentación de funciones algebraicas y trigonométricas en diversos contextos (algebraico, visual, numérico y gráfico), permite al estudiante identificar comportamientos análogos y relacionar éstos con transformaciones gráficas. De acuerdo a los resultados obtenidos, concluimos que el estudiante al producir sus propias gráficas, éste logra identificar por si mismo comportamientos análogos entre las gráficas algebraicas y trigonométricas, además, el uso de diferentes registros de representación coadyuva al desarrollo de dichos resultados.
Resumo:
La idea que motiva el presente trabajo se refiere a entender cómo generalizan los estudiantes de bachillerato y qué tipo de pensamiento les permite hacerlo, para ello planteamos a un grupo de estudiantes del IEMS actividades donde se debe identificar un patrón que predice una secuencia geométrica, como un primer acercamiento a la idea de generalización. Este patrón debe ser descrito de forma algebraica (fórmula). En este artículo mostraremos dos tipos de formulaciones distintas construidas por los estudiantes para abordar el problema con distintos tipos de pensamiento que nos permiten mirar aspectos que podrían determinar el éxito o fracaso del desarrollo cognitivo puesto en marcha por los estudiantes.
Resumo:
Frecuentemente, se hace énfasis en la enseñanza y aprendizaje de las matemáticas movilizar diversos registros de representación de una misma gestión. Sin embargo, el tratamiento de conversión de una representación en una representación de otro registro no es fácil y en ocasiones hasta imposible. Al respecto, Duval (1988) señala: “cuando se efectúa la conversión ecuación → gráfico no surge ninguna dificultad, pero todo cambia cuando se hace la conversión inversa”. Este aporte es muy sobresaliente e induce a investigar la naturaleza de esta problemática. En este sentido, nuestro trabajo de investigación está enfocado en identificar algunas dificultades que puedan presentar los estudiantes al tratar de poner en correspondencia el registro gráfico con el algebraico. Para ello, se aplicaron actividades donde se exponen algunos valores visuales de la gráfica, con el fin de establecer una correspondencia entre esos valores visuales de la recta y su respectiva escritura algebraica, así como, establecer un sistema para las diferentes categorías de tres rectas en el plano.
Resumo:
La Socioepistemología a través de diversos resultados de investigación, señala la conveniencia de hacer estudios del uso del conocimiento matemático y su desarrollo para crear un marco que ofrezca las prácticas de referencia en donde se resignifique la matemática. Bajo esa premisa estudiamos los usos de la gráfica en el bachillerato, con el fin de construir un marco de referencia que dé evidencia de los funcionamientos y formas de las gráficas y en consecuencia una resignificación del conocimiento. Lo anterior abre una nueva brecha para tratar a la gráfica, puesto que no la miramos como la representación de algún concepto matemático. Por el contrario, la graficación es abordada como la argumentación que genera conocimiento. En ese sentido, afirmamos que tratamos con una segmentación del conocimiento, puesto que hay un cambio de enfoque que nos conduce a teorizar sobre el uso del conocimiento y como consecuencia se genera un subuniverso de significados.