875 resultados para Function and mobility
Resumo:
As the Internet has evolved and grown, an increasing number of nodes (hosts or autonomous systems) have become multihomed, i.e., a node is connected to more than one network. Mobility can be viewed as a special case of multihoming—as a node moves, it unsubscribes from one network and subscribes to another, which is akin to one interface becoming inactive and another active. The current Internet architecture has been facing significant challenges in effectively dealing with multihoming (and consequently mobility). The Recursive INternet Architecture (RINA) [1] was recently proposed as a clean-slate solution to the current problems of the Internet. In this paper, we perform an average-case cost analysis to compare the multihoming / mobility support of RINA, against that of other approaches such as LISP and MobileIP. We also validate our analysis using trace-driven simulation.
Resumo:
Light is a critical environmental signal that regulates every phase of the plant life cycle, from germination to floral initiation. Of the many light receptors in the model plant
Even though the domain structure of phys has been extensively studied, not all of the intramolecular requirements for phy localization to photobodies are known. Previous studies have shown that the entire C-terminus of phys is both necessary and sufficient for their localization to photobodies. However, the importance of the individual subdomains of the C-terminus is still unclear. For example a truncation lacking part of the most C-terminal domain, the histidine kinase-related domain (HKRD), can still localize to small photobodies in the light and behaves like a weak allele. However, a point mutation within the HKRD renders the entire molecule completely inactive. To resolve this discrepancy, I explored the hypothesis that this point mutation might impair the dimerization of the HKRD; dimerization has been shown to occur via the C-terminus of phy and is required for more efficient signaling. I show that this point mutation impairs nuclear localization of phy as well as its subnuclear localization to photobodies. Additionally, yeast-two-hybrid analysis shows that the wild-type HKRD can homodimerize but that the HKRD containing the point mutation fails to dimerize with both itself and with wild-type HKRD. These results demonstrate that dimerization of the HKRD is required for both nuclear and photobody localization of phy.
Studies of seedlings grown in diurnal conditions show that photoactivated phy can persist into darkness to repress seedling growth; a seedling's growth rate is therefore fastest at the end of the night. To test the idea that photobodies could be involved in regulating seedling growth in the dark, I compared the growth of two transgenic Arabidopsis lines, one in which phy can localize to photobodies (
In addition to determining an intragenic requirement for photobody localization and further exploring the significance of photobodies in phy signaling, I wanted to identify extragenic regulators of photobody localization. A recent study identified one such factor, HEMERA (HMR);
In this work, I show that dimerization of the HKRD is required for both the nuclear and photobody localization of phy. I also demonstrate a tight correlation between photobody localization and PIF3 degradation, further establishing the significance of photobodies in phy signaling. Finally, I identify a novel gene,
Resumo:
Intercellular adhesion molecule 1 (ICAM-1) is a transmembrane protein found on the surface of vascular endothelial cells (ECs). Its expression is upregulated at inflammatory sites, allowing for targeted delivery of therapeutics using ICAM-1-binding drug carriers. Engagement of multiple copies of ICAM-1 by these drug carriers induces cell adhesion molecule (CAM)-mediated endocytosis, which results in trafficking of carriers to lysosomes and across ECs. Knowledge about the regulation behind CAM-mediated endocytosis can help improve drug delivery, but questions remain about these regulatory mechanisms. Furthermore, little is known about the natural function of this endocytic pathway. To address these gaps in knowledge, we focused on two natural binding partners of ICAM-1 that potentially elicit CAM-mediated endocytosis: leukocytes (which bind ICAM-1 via β2 integrins) and fibrin polymers (a main component of blood clots which binds ICAM-1 via the γ3 sequence). First, inspired by properties of these natural binding partners, we varied the size and targeting moiety of model drug carriers to determine how these parameters affect CAM-mediated endocytosis. Increasing ICAM-1-targeted carrier size slowed carrier uptake kinetics, reduced carrier trafficking to lysosomes, and increased carrier transport across ECs. Changing targeting moieties from antibodies to peptides decreased particle binding and uptake, lowered trafficking to lysosomes, and increased transport across ECs. Second, using cell culture models of leukocyte/EC interactions, inhibiting regulatory elements of the CAM-mediated pathway disrupted leukocyte sampling, a process crucial to leukocyte crossing of endothelial layers (transmigration). This inhibition also decreased leukocyte transmigration across ECs, specifically through the transcellular route, which occurs through a single EC without disassembly of cell-cell junctions. Third, fibrin meshes, which mimic blood clot fragments/remnants, bound to ECs at ICAM-1-enriched sites and were internalized by the endothelium. Inhibiting the CAM-mediated pathway disrupted this uptake. Following endocytosis, fibrin meshes trafficked to lysosomes where they were degraded. In mouse models, CAM-mediated endocytosis of fibrin meshes appeared to remove fibrin remnants at the endothelial surface, preventing re-initiation of the coagulation cascade. Overall, these results support a link between CAM-mediated endocytosis and leukocyte transmigration as well as uptake of fibrin materials by ECs. Furthermore, these results will guide the future design of ICAM-1-targeted carrier-assisted therapies.
Resumo:
Cryopreservation of ovarian tissue has been proposed for storing gametes of young patients at high risk of premature ovarian failure. Autotransplantation has recently provided some promising results and is still the unique option to restore ovarian function from cryopreserved ovarian tissue in humans. In this article, we analyse data from the combined orthotopic and heterotopic transplantation of cryopreserved ovarian tissue that restored the ovarian function and fertility. Orthotopic transplantation of cryopreserved ovarian tissue at ovarian and peritoneal sites, together with a heterotopic transplantation at the abdominal subcutaneous site, was performed to restore the ovarian function of a 29-year-old woman previously treated with bone marrow transplantation (BMT) for Hodgkin's disease. Ovarian reserve markers progressively suppress within values 5 months after the transplantation (basal FSH 5 mUI/ml and inhibin B 119 ng/ml). Follicular development was observed at all transplantation sites but was predominant at the ovarian site. Six natural cycles were fully documented and analysed. The patient became spontaneously pregnant following the sixth cycle, but unfortunately she later miscarried. Combined orthotopic and heterotopic transplantations succeeded in the restoration of normal spontaneous cycles. Furthermore, this spontaneous pregnancy confirmed the efficiency of this procedure for restoring human fertility.
Resumo:
The deep sea is often viewed as a vast, dark, remote, and inhospitable environment, yet the deep ocean and seafloor are crucial to our lives through the services that they provide. Our understanding of how the deep sea functions remains limited, but when treated synoptically, a diversity of supporting, provisioning, regulating and cultural services becomes apparent. The biological pump transports carbon from the atmosphere into deep-ocean water masses that are separated over prolonged periods, reducing the impact of anthropogenic carbon release. Microbial oxidation of methane keeps another potent greenhouse gas out of the atmosphere while trapping carbon in authigenic carbonates. Nutrient regeneration by all faunal size classes provides the elements necessary for fueling surface productivity and fisheries, and microbial processes detoxify a diversity of compounds. Each of these processes occur on a very small scale, yet considering the vast area over which they occur they become important for the global functioning of the ocean. The deep sea also provides a wealth of resources, including fish stocks, enormous bioprospecting potential, and elements and energy reserves that are currently being extracted and will be increasingly important in the near future. Society benefits from the intrigue and mystery, the strange life forms, and the great unknown that has acted as a muse for inspiration and imagination since near the beginning of civilization. While many functions occur on the scale of microns to meters and timescales up to years, the derived services that result are only useful after centuries of integrated activity. This vast dark habitat, which covers the majority of the globe, harbour processes that directly impact humans in a variety of ways; however, the same traits that differentiate it from terrestrial or shallow marine systems also result in a greater need for integrated spatial and temporal understanding as it experiences increased use by society. In this manuscript we aim to provide a foundation for informed conservation and management of the deep sea by summarizing the important role of the deep sea in society.
Resumo:
Microscopic plastic debris, termed “microplastics”, are of increasing environmental concern. Recent studies have demonstrated that a range of zooplankton, including copepods, can ingest microplastics. Copepods are a globally abundant class of zooplankton that form a key trophic link between primary producers and higher trophic marine organisms. Here we demonstrate that ingestion of microplastics can significantly alter the feeding capacity of the pelagic copepod Calanus helgolandicus. Exposed to 20 μm polystyrene beads (75 microplastics mL–1) and cultured algae ([250 μg C L–1) for 24 h, C. helgolandicus ingested 11% fewer algal cells (P = 0.33) and 40% less carbon biomass (P < 0.01). There was a net downward shift in the mean size of algal prey consumed (P < 0.001), with a 3.6 fold increase in ingestion rate for the smallest size class of algal prey (11.6–12.6 μm), suggestive of postcapture or postingestion rejection. Prolonged exposure to polystyrene microplastics significantly decreased reproductive output, but there were no significant differences in egg production rates, respiration or survival. We constructed a conceptual energetic (carbon) budget showing that microplastic-exposed copepods suffer energetic depletion over time. We conclude that microplastics impede feeding in copepods, which over time could lead to sustained reductions in ingested carbon biomass.
Resumo:
In view of the evidence that cognitive deficits in schizophrenia are critically important for long-term outcome, it is essential to establish the effects that the various antipsychotic compounds have on cognition, particularly second-generation drugs. This parallel group, placebo-controlled study aimed to compare the effects in healthy volunteers (n = 128) of acute doses of the atypical antipsychotics amisulpride (300 mg) and risperidone (3 mg) to those of chlorpromazine (100 mg) on tests thought relevant to the schizophrenic process: auditory and visual latent inhibition, prepulse inhibition of the acoustic startle response, executive function and eye movements. The drugs tested were not found to affect auditory latent inhibition, prepulse inhibition or executive functioning as measured by the Cambridge Neuropsychological Test Battery and the FAS test of verbal fluency. However, risperidone disrupted and amisulpride showed a trend to disrupt visual latent inhibition. Although amisulpride did not affect eye movements, both risperidone and chlorpromazine decreased peak saccadic velocity and increased antisaccade error rates, which, in the risperidone group, correlated with drug-induced akathisia. It was concluded that single doses of these drugs appear to have little effect on cognition, but may affect eye movement parameters in accordance with the amount of sedation and akathisia they produce. The effect risperidone had on latent inhibition is likely to relate to its serotonergic properties. Furthermore, as the trend for disrupted visual latent inhibition following amisulpride was similar in nature to that which would be expected with amphetamine, it was concluded that its behaviour in this model is consistent with its preferential presynaptic dopamine antagonistic activity in low dose and its efficacy in the negative symptoms of schizophrenia.
Resumo:
Obesity is a low grade inflammatory state associated with premature cardiovascular morbidity and mortality. Along with traditional risk factors the measurement of endothelial function, insulin resistance, inflammation and arterial stiffness may contribute to the assessment of cardiovascular risk. We conducted a randomised placebo controlled trial to assess the effects of 12 weeks treatment with a PPAR-alpha agonist (fenofibrate) and a PPAR-gamma agonist (pioglitazone) on these parameters in obese glucose tolerant men. Arterial stiffness was measured using augmentation index and pulse wave velocity (PWV). E-selectin, VCAM-1 and ICAM-1 were used as markers of endothelial function. Insulin sensitivity improved with pioglitazone treatment (p=0.001) and, in keeping with this, adiponectin increased by 85.2% (p
Resumo:
The greatest relaxation time for an assembly of three- dimensional rigid rotators in an axially symmetric bistable potential is obtained exactly in terms of continued fractions as a sum of the zero frequency decay functions (averages of the Legendre polynomials) of the system. This is accomplished by studying the entire time evolution of the Green function (transition probability) by expanding the time dependent distribution as a Fourier series and proceeding to the zero frequency limit of the Laplace transform of that distribution. The procedure is entirely analogous to the calculation of the characteristic time of the probability evolution (the integral of the configuration space probability density function with respect to the position co-ordinate) for a particle undergoing translational diffusion in a potential; a concept originally used by Malakhov and Pankratov (Physica A 229 (1996) 109). This procedure allowed them to obtain exact solutions of the Kramers one-dimensional translational escape rate problem for piecewise parabolic potentials. The solution was accomplished by posing the problem in terms of the appropriate Sturm-Liouville equation which could be solved in terms of the parabolic cylinder functions. The method (as applied to rotational problems and posed in terms of recurrence relations for the decay functions, i.e., the Brinkman approach c.f. Blomberg, Physica A 86 (1977) 49, as opposed to the Sturm-Liouville one) demonstrates clearly that the greatest relaxation time unlike the integral relaxation time which is governed by a single decay function (albeit coupled to all the others in non-linear fashion via the underlying recurrence relation) is governed by a sum of decay functions. The method is easily generalized to multidimensional state spaces by matrix continued fraction methods allowing one to treat non-axially symmetric potentials, where the distribution function is governed by two state variables. (C) 2001 Elsevier Science B.V. All rights reserved.