996 resultados para Freshwater algae -- Spain
Resumo:
The relative importance of algal and detrital energy pathways remains a central question in wetlands ecology. We used bulk stable isotope analysis and fatty acid composition to investigate the relative contributions of periphyton (algae) and floc (detritus) in a freshwater wetland with the goal of determining the inputs of these resource pools to lower trophic-level consumers. All animal samples revealed fatty acid markers indicative of both microbial (detrital) and algal origins, though the relative contributions varied among species. Vascular plant markers were in low abundance in most consumers. Detritivory is important for chironomids and amphipods, as demonstrated by the enhanced bacterial fatty acids present in both consumers, while algal resources, in the form of periphyton, likely support ephemeropteran larvae. Invertebrates such as amphipods and grass shrimp appear to be important resources for small omnivorous fish, while Poecilia latipinna appear to strongly use periphyton and Ephemeroptera larvae as food sources. Both P. latipinna and Lepomis spp. assimilated small amounts of vascular plant debris, possibly due to unintentional ingestion of floc while foraging for invertebrates and insect larvae. Physid snails, Haitia spp., were characterized by considerably different fatty acid compositions than other taxa examined, and likely play a unique role in Everglades’ food webs.
Resumo:
We conducted a low-level phosphorus (P) enrichment study in two oligotrophic freshwater wetland communities (wet prairies [WP] and sawgrass marsh [SAW]) of the neotropical Florida Everglades. The experiment included three P addition levels (0, 3.33, and 33.3 mg P m−2 month−1), added over 2 years, and used in situ mesocosms located in northeastern Everglades National Park, Fla., USA. The calcareous periphyton mat in both communities degraded quickly and was replaced by green algae. In the WP community, we observed significant increases in net aboveground primary production (NAPP) and belowground biomass. Aboveground live standing crop (ALSC) did not show a treatment effect, though, because stem turnover rates of Eleocharis spp., the dominant emergent macrophyte in this community, increased significantly. Eleocharis spp. leaf tissue P content decreased with P additions, causing higher C:P and N:P ratios in enriched versus unenriched plots. In the SAW community, NAPP, ALSC, and belowground biomass all increased significantly in response to P additions. Cladium jamaicense leaf turnover rates and tissue nutrient content did not show treatment effects. The two oligotrophic communities responded differentially to P enrichment. Periphyton which was more abundant in the WP community, appeared to act as a P buffer that delayed the response of other ecosystem components until after the periphyton mat had disappeared. Periphyton played a smaller role in controlling ecosystem dynamics and community structure in the SAW community. Our data suggested a reduced reliance on internal stores of P by emergent macrophytes in the WP that were exposed to P enrichment. Eleocharis spp. rapidly recycled P through more rapid aboveground turnover. In contrast, C. jamaicense stored added P by initially investing in belowground biomass, then shifting growth allocation to aboveground tissue without increasing leaf turnover rates. Our results suggest that calcareous wetland systems throughout the Caribbean, and oligotrophic ecosystems in general, respond rapidly to low-level additions of their limiting nutrient.
Resumo:
A high abundance of isoprenoid hydrocarbons, the botryococcenes, with carbon numbers from 32 to 34 were detected in the Florida Everglades freshwater wetlands. These compounds were present in varying amounts up to 106 μg/gdw in periphyton, 278 μg/gdw in floc, and 46 μg/gdw in soils. Their structures were determined based on comparison to standards, interpretation of their mass spectra and those of their hydrogenation products, and comparison of Kovats indexes to those reported in the literature. A total of 26 cyclic and acyclic botryococcenes with 8 skeletons were identified, including those with fewer degrees of unsaturation, which are proposed as early diagenetic derivatives from the natural products. This is the first report that botryococcenes occur in the Everglades freshwater wetlands. Their potential biogenetic sources from green algae and cyanobacteria were examined, but neither contained botryococcenes. Thus, the source implication of botryococcenes in this ecosystem needs further study.
Resumo:
Cyanobacteria ("blue-green algae") are known to produce a diverse repertoire of biologically active secondary metabolites. When associated with so-called "harmful algal blooms", particularly in freshwater systems, a number of these metabolites have been associated—as "toxins", or commonly "cyanotoxins"—with human and animal health concerns. In addition to the known water-soluble toxins from these genera (i.e. microcystins, cylindrospermopsin, and saxitoxins), our studies have shown that there are metabolites within the lipophilic extracts of these strains that inhibit vertebrate development in zebrafish embryos. Following these studies, the zebrafish embryo model was implemented in the bioassay-guided purification of four isolates of cyanobacterial harmful algal blooms, namely Aphanizomenon, two isolates of Cylindrospermopsis, and Microcystis, in order to identify and chemically characterize the bioactive lipophilic metabolites in these isolates. ^ We have recently isolated a group of polymethoxy-1-alkenes (PMAs), as potential toxins, based on the bioactivity observed in the zebrafish embryos. Although PMAs have been previously isolated from diverse cyanobacteria, they have not previously been associated with relevant toxicity. These compounds seem to be widespread across the different genera of cyanobacteria, and, according to our studies, suggested to be derived from the polyketide biosynthetic pathway which is a common synthetic route for cyanobacterial and other algal toxins. Thus, it can be argued that these metabolites are perhaps important contributors to the toxicity of cyanobacterial blooms. In addition to the PMAs, a set of bioactive glycosidic carotenoids were also isolated because of their inhibition of zebrafish embryonic development. These pigmented organic molecules are found in many photosynthetic organisms, including cyanobacteria, and they have been largely associated with the prevention of photooxidative damage. This is the first indication of these compounds as toxic metabolites and the hypothesized mode of action is via their biotransformation to retinoids, some of which are known to be teratogenic. Additional fractions within all four isolates have been shown to contain other uncharacterized lipophilic toxic metabolites. This apparent repertoire of lipophilic compounds may contribute to the toxicity of these cyanobacterial harmful algal blooms, which were previously attributed primarily to the presence of the known water-soluble toxins.^
Resumo:
Freshwater use is a major concern in the mass production of algae for biofuels. This project examined the use of canal water obtained from the Everglades Agricultural Area as a base medium for the mass production of algae. This water is not suitable for human consumption, and it is currently used for crop irrigation. A variety of canals were found to be suitable for water collection. Comparison of two methods for algal production showed no significant difference in biomass accumulation. It was discovered that synthetic reticulated foam can be used for algal biomass collection and harvest, and there is potential for its application in large-scale operations. Finally, it was determined that high alkaline conditions may help limit contaminants and competing organisms in growing algae cultures.
Resumo:
Acknowledgements The authors would like to thank M. N. Cueto and J. M. Antonio (ECOBIOMAR) for molecular analysis and technical support. K. MacKenzie (University of Aberdeen) and A. Roura (ECOBIOMAR) assisted with the taxonomic identification of parasites. We are also grateful to P. Caballero (Service Nature Conservation of the Xunta de Galicia) for fish sampling support.
Resumo:
Perturbation of natural ecosystems, namely by increasing freshwater use and its degradative use, as well as topsoil erosion by water of land-use production systems, have been emerging as topics of high environmental concern. Freshwater use has become a focus of attention in the last few years for all stakeholders involved in the production of goods, mainly agro-industrial and forest-based products, which are freshwater-intensive consumers, requiring large inputs of green and blue water. This thesis presents a global review on the available Water Footprint Assessment and Life Cycle Assessment (LCA)-based methods for measuring and assessing the environmental relevance of freshwater resources use, based on a life cycle perspective. Using some of the available midpoint LCA-based methods, the freshwater use-related impacts of a Portuguese wine (white ‘vinho verde’) were assessed. However, the relevance of environmental green water has been neglected because of the absence of a comprehensive impact assessment method associated with green water flows. To overcome this constraint, this thesis helps to improve and enhance the LCA-based methods by providing a midpoint and spatially explicit Life Cycle Impact Assessment (LCIA) method for assessing impacts on terrestrial green water flow and addressing reductions in surface blue water production caused by reductions in surface runoff due to land-use production systems. The applicability of the proposed method is illustrated by a case study on Eucalyptus globulus conducted in Portugal, as the growth of short rotation forestry is largely dependent on local precipitation. Topsoil erosion by water has been characterised as one of the most upsetting problems for rivers. Because of this, this thesis also focuses on the ecosystem impacts caused by suspended solids (SS) from topsoil erosion that reach freshwater systems. A framework to conduct a spatially distributed SS delivery to freshwater streams and a fate and effect LCIA method to derive site-specific characterisation factors (CFs) for endpoint damage on aquatic ecosystem diversity, namely on algae, macrophyte, and macroinvertebrates organisms, were developed. The applicability of this framework, combined with the derived site-specific CFs, is shown by conducting a case study on E. globulus stands located in Portugal as an example of a land use based system. A spatially explicit LCA assessment was shown to be necessary, since the impacts associated with both green water flows and SS vary greatly as a function of spatial location.
Resumo:
The interactions of carbon nanotubes with pesticides, such as carbofuran, classical contaminants (e.g., pesticides, polyaromatic hydrocarbons, heavy metals, and dyes) and emerging contaminants, including endocrine disruptors, are critical components of the environmental risks of this important class of carbon-based nanomaterials. In this work, we studied the modulation of acute carbofuran toxicity to the freshwater fish Nile tilapia (Oreochromis niloticus) by nitric acid treated multiwalled carbon nanotubes, termed HNO3-MWCNT. Nitric acid oxidation is a common chemical method employed for the purification, functionalisation and aqueous dispersion of carbon nanotubes. HNO3-MWCNT were not toxic to Nile tilapia at concentrations ranging from 0.1 to 3.0 mg/L for exposure times of up to 96 h. After 24, 48, 72 and 96 h, the LC50 values of carbofuran were 4.0, 3.2, 3.0 and 2.4 mg/mL, respectively. To evaluate the influence of carbofuran-nanotube interactions on ecotoxicity, we exposed the Nile tilapia to different concentrations of carbofuran mixed together with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, and 96 h of exposure, the LC50 values of carbofuran plus nanotubes were 3.7, 1.6, 0.7 and 0.5 mg/L, respectively. These results demonstrate that HNO3-MWCNT potentiate the acute toxicity of carbofuran, leading to a more than five-fold increase in the LC50 values. Furthermore, the exposure of Nile tilapia to carbofuran plus nanotubes led to decreases in both oxygen consumption and swimming capacity compared to the control. These findings indicate that carbon nanotubes could act as pesticide carriers affecting fish survival, metabolism and behaviour.
Resumo:
A new species of the relatively poorly known Neotropical freshwater stingray genus Plesiotrygon Rosa, Castello & Thorson, 1987 is described from the main channel and smaller tributaries (Ríos Itaya and Pachitea) of the upper Amazon basin in Peru. The first specimen to be collected, however, was from much farther east in Rio Solimões in 1996, just down-river from Rio Purus (specimen unavailable for this study). Plesiotrygon nana sp. nov., is a very distinctive and unusually small species of freshwater stingray (Potamotrygonidae), described here mostly from three specimens representing different size classes and stages of sexual maturity. Plesiotrygon nana sp. nov., is distinguished from its only congener, P. iwamae Rosa, Castello & Thorson, 1987, by numerous unique features, including: dorsal coloration composed of very fine rosettes or a combination of spots and irregular ocelli; very circular disc and snout; very small and less rhomboidal spiracles; short snout and anterior disc region; narrow mouth and nostrils; denticles on dorsal tail small, scattered, not forming row of enlarged spines; adult and preadult specimens with significantly fewer tooth rows; fewer caudal vertebrae; higher total pectoral radials; very small size, probably not surpassing 250 mm disc length or width, males maturing sexually at around 180 mm disc length and 175 mm disc width; distal coloration of tail posterior to caudal stings usually dark purplish-brown; and features of the ventral lateral-line canals (hyomandibular canal very narrow, infraorbital and supraorbital canals not undulated, supraorbital and infraorbital loops small and narrow, supraorbital loop very short, not extending posteriorly to level of mouth, jugular and posterior infraorbital canals short, not extending caudally to first gill slits, subpleural loop very narrow posteriorly; absence of anterior and posterior subpleural tubules). To provide a foundation for the description of P. nana sp. nov., morphological variation in P. iwamae was examined based on all type specimens as well as newly collected and previously unreported material. Two specimens topotypic with the male paratype of P. nana sp. nov., referred to here as Plesiotrygon cf. iwamae, are also reported. Relationships of the new species to P. iwamae are discussed; further characters indicative of Plesiotrygon monophyly are proposed, but the genus may still not be valid. Plesiotrygon nana sp. nov., is commercialized with some regularity in the international aquarium trade from Iquitos (Peru), an alarming circumstance because nothing is known of its biology or conservation requirements.
Resumo:
Potamotrygon tatianae sp. nov., is described from Río Madre de Díos, Peru, upper Rio Madeira basin. The new species is distinguished from all congeners by a unique combination of characters, including its dorsal color pattern formed by a relatively slender, highly convoluted, beige to dark brown vermicular pattern, a single row of dorsal tail spines, and a relatively longer tail posterior to caudal stings. Potamotrygon tatianae sp. nov., occurs sympatrically with other species of Potamotrygon (P. falkneri, P. orbignyi and P. motoro). From the similar species P. falkneri, P. tatianae sp. nov., is further distinguished by the absence of circular, reniform, and oval spots, by its proportionally much longer tail, by having dorsal tail spines in one irregular row, and by features of the ventral lateral-line canal, dermal denticles and neurocranium. From P. orbignyi, the new species is distinct by lacking a reticulate pattern on dorsal disc and by the presence of two angular cartilages. From P. motoro, P. tatianae sp. nov., is further separated by the lack of ocelli formed by strong black concentric rings, by the more flattened aspect of its head and disc, and by having smaller and more numerous teeth. The discovery of a new species that so closely resembles a congeneric form in color pattern, a feature highly variable within the latter, highlights the importance of examining large series of individuals and of detailed morphological analyses in revealing the potentially highly cryptic nature of the diversity within the family.
Resumo:
Potamotrygon boesemani, new species, is described from the Corantijn river drainage in Surinam. The species has a diagnostic dorsal color pattern formed by deep orange to red ocellated spots of irregular form, encircled by relatively broad black rings. Potamotrygon boesemani is distinguished from other ocellated congeners (P. motoro, P. henlei and P. leopoldi) by the more intensely colored ocelli, which are usually yellow in the latter species. From P. motoro it is also distinguished by the darker dorsal background coloration, by the broader black contour of the dorsal ocelli, and by the irregular form of the ocelli as compared to the more rounded shape in the latter species. From P. henlei and P. leopoldi, it is distinguished by the lack of ocelli on tail. From the tentatively identified specimen of P. ocellata, which also has dark orange ocelli, the irregular contour of the ocelli in the new species is also distinctive. The teeth are relatively smaller and in greater number than in P. motoro and P. ocellata, with up to 45 rows in the upper jaw.
Resumo:
The effects of temperature on the life table, and of seston quality on the individual growth and reproduction of cladocerans from a tropical lake were tested in the laboratory. Life-table experiments were carried out at 17 degrees C, 23 degrees C, and 27 degrees C. Growth bioassays tested the influence of natural seston fractions, separated by net filtration, on cladocerans. The treatments were: (1) total seston plus Scenedesmus spinosus (1 mg C.L(-1)), (2) seston <= 36 mu m, and (3) seston >36 mu m. Phytoplankton composition, density, and biomass were evaluated during growth experiments, together with sestonic carbon, nitrogen, and phosphorus concentrations. The intrinsic rates of natural increase were higher for Moina micrura and Daphnia ambigua at 27 degrees C compared to 17 degrees C. The age at first reproduction of both species was delayed at 17 degrees C. Growth rates and fecundity of M. micrura were higher in the seston fraction <= 36 mu m than in the fraction > 36 mu m. Higher growth rates and fecundity of Moina minuta were observed in the seston enriched with the green alga in comparison to the seston <= 36 mu m and > 36 mu m. Bosmina longirostris was unable to reproduce at 17 degrees C and to grow in the seston > 36 mu m in one experiment. High densities and/or biomass of large colonial and filamentous algae present in the larger seston fraction could have contributed to reduce growth and reproduction. Episodes of food-quantity limitation may occur, but there was no evidence of mineral limitation, although seston C:P and C:N ratios were always above the limiting values assumed for temperate water bodies. The C:P and C:N ratios arc highly influenced by carbon that originates primarily from resuspended detritus from the lake.
Resumo:
We have adapted an actin-mosin motility assay to examine the interactions in vitro between actin cables isolated from the giant internodal cells of the freshwater alga, Nitella, and pigment granules extracted from red ovarian chromatophores of the freshwater palaemonid shrimp, Macrobrachium olfersi. The chromatophore pigment mass consists of large (0.5-1.0-mu m diameter) membrane-bounded granules, and small (140-nm diameter), a membranous granules, both structurally continuous with the abundant smooth endoplasmic reticulum. Our previous immunocytochemical studies show a myosin motor to be stably associated with the pigment mass; however, to which granule type or membrane the myosin motor is attached is unclear. Here, we show that sodium vanadate, a myosin ATPase inhibitor, markedly increases the affinity of isolated, large, membrane-bounded granules for Nitella actin cables to which they become permanently attached. This interaction does not occur in granule preparations containing ATP with uninhibited, active myosin without vanadate. We propose that a stable state of elevated affinity is established between the granule-located myosin motor and the Nitella actin cables, resulting from a vanadate-inhibited acto-myosin-ADP complex. This finding provides further evidence for a myosin motor positioned on the surface of the membrane-bounded pigment granules in shrimp ovarian chromatophores.
Resumo:
Background: Large inequalities of mortality by most cancers in general, by mouth and pharynx cancer in particular, have been associated to behaviour and geopolitical factors. The assessment of socioeconomic covariates of cancer mortality may be relevant to a full comprehension of distal determinants of the disease, and to appraise opportune interventions. The objective of this study was to compare socioeconomic inequalities in male mortality by oral and pharyngeal cancer in two major cities of Europe and South America. Methods: The official system of information on mortality provided data on deaths in each city; general censuses informed population data. Age-adjusted death rates by oral and pharyngeal cancer for men were independently assessed for neighbourhoods of Barcelona, Spain, and Sao Paulo, Brazil, from 1995 to 2003. Uniform methodological criteria instructed the comparative assessment of magnitude, trends and spatial distribution of mortality. General linear models assessed ecologic correlations between death rates and socioeconomic indices (unemployment, schooling levels and the human development index) at the inner-city area level. Results obtained for each city were subsequently compared. Results: Mortality of men by oral and pharyngeal cancer ranked higher in Barcelona (9.45 yearly deaths per 100,000 male inhabitants) than in Spain and Europe as a whole; rates were on decrease. Sao Paulo presented a poorer profile, with higher magnitude (11.86) and stationary trend. The appraisal of ecologic correlations indicated an unequal and inequitably distributed burden of disease in both cities, with poorer areas tending to present higher mortality. Barcelona had a larger gradient of mortality than Sao Paulo, indicating a higher inequality of cancer deaths across its neighbourhoods. Conclusion: The quantitative monitoring of inequalities in health may contribute to the formulation of redistributive policies aimed at the concurrent promotion of wellbeing and social justice. The assessment of groups experiencing a higher burden of disease can instruct health services to provide additional resources for expanding preventive actions and facilities aimed at early diagnosis, standardized treatments and rehabilitation.
Resumo:
Background: Neotropical freshwater stingrays (Batoidea: Potamotrygonidae) host a diverse parasite fauna, including cestodes. Both cestodes and their stingray hosts are marine-derived, but the taxonomy of this host/parasite system is poorly understood. Methodology: Morphological and molecular (Cytochrome oxidase I) data were used to investigate diversity in freshwater lineages of the cestode genus Rhinebothrium Linton, 1890. Results were based on a phylogenetic hypothesis for 74 COI sequences and morphological analysis of over 400 specimens. Cestodes studied were obtained from 888 individual potamotrygonids, representing 14 recognized and 18 potentially undescribed species from most river systems of South America. Results: Morphological species boundaries were based mainly on microthrix characters observed with scanning electron microscopy, and were supported by COI data. Four species were recognized, including two redescribed (Rhinebothrium copianullum and R. paratrygoni), and two newly described (R. brooksi n. sp. and R. fulbrighti n. sp.). Rhinebothrium paranaensis Menoret & Ivanov, 2009 is considered a junior synonym of R. paratrygoni because the morphological features of the two species overlap substantially. The diagnosis of Rhinebothrium Linton, 1890 is emended to accommodate the presence of marginal longitudinal septa observed in R. copianullum and R. brooksi n. sp. Patterns of host specificity and distribution ranged from use of few host species in few river basins, to use of as many as eight host species in multiple river basins. Significance: The level of intra-specific morphological variation observed in features such as total length and number of proglottids is unparalleled among other elasmobranch cestodes. This is attributed to the large representation of host and biogeographical samples. It is unclear whether the intra-specific morphological variation observed is unique to this freshwater system. Nonetheless, caution is urged when using morphological discontinuities to delimit elasmobranch cestode species because the amount of variation encountered is highly dependent on sample size and/or biogeographical representation.