817 resultados para Free fatty acids
Resumo:
Lipid hydrolysis and the nature of fatty acids lost as a result of lipid hydrolysis in milk fish (Chanos chanos) during frozen storage at -20°C is discussed in this paper. There was a preferential loss of saturated acids during the first three weeks of storage. This was followed by loss of polyunsaturated acids during the next seven weeks. Sharp decrease in the levels of monounsaturated acids was observed from the 10th week of frozen storage. These observations are due to the preferential hydrolysis of phospholipids with relatively high proportion of saturated acids during the first three weeks, followed by the hydrolysis of phospholipids with high proportions of polyunsaturated fatty acids from the 3rd to the 10th week, and finally, predominant hydrolysis of neutral lipids from the 10th week onwards. Storage of fish in the ice prior to freezing was found to accelerate lipid hydrolysis, especially that of neutral lipids, during frozen storage.
Resumo:
The purpose of this study, Evaluation the effect of Rosmarinus officinalis and Thymus vulgaris extracts on the stability of poly unsaturated fatty acids in frozen Silver carp minced. Treatments include: Treatment 1 - Control: frozen meat packaged in conventional Treatment 2: Frozen Silver carp minced+Thyme 300 mg/kg in normal packaging Treatment 3: Frozen Silver carp minced+Rosemary 200 mg/kg in normal packaging Treatment 4: Frozen Silver carp minced+Rosemary compound (100 mg/kg) and Thyme (100 mg/kg) in normal packaging After rapid freezing of samples in the spiral freezer by individual quick freezing method, to maintain the cold temperature (-18) °C were transferred. Sampling and measurements to determine the fatty acid profile of the zero phase beginning in the first month and then every ten days, and 15 days in the second month of the third month after the monthly test. Identifying, defining and measuring the fatty acid profile by gas chromatography was performed. In this study, levels of both saturated and unsaturated fatty acids in three experimental and one control were identified as follows: A: saturated fatty acids: Meristic C14: 0/Palmitic C16: 0/Hepta decaenoic C17: 0/Stearic C18: 0/Arashidic C20: 0/B:Mono unsaturated fatty acids: palmitoleic C16: 1-W7/Oleic C18: 1-W9/Gadoleic C20: 1-W9 C:Poly unsaturated fatty acids: Linoleic C18: 2-W6/α-Linolenic C18: 3-W3 D:High unsaturated fatty acids: Arachidonic C20: 4-W6 Eicosapentaenoic acid C20: 5-EPA/W3 Docosahexaenoic C22: 6-DHA/W3 Results of this study was to determine, Thyme and rosemary extracts containing silver carp minced stored in freezing conditions, Stability of different types of fatty acids, monounsaturated fatty acids, poly-unsaturated fatty acids, omega-3 and omega-6 fatty acids are. So that none of the fatty acids measured were not significant 100% increase or decrease, While changes in the fatty acid oxidation during storage time is minimized. The results obtained from the fatty acid profiles and indicators of their and statistical tests show that treatment with rosemary extract More stable during storage (-18) ° C In comparison with the control and other treatments are shown; And at relatively low compared to other treatments and control samples oleic acid and linoleic acid, palmitic more. According to studies,in Silver carp minced that containing rosemary extract, end of the storage period of six months. Were usable, so even rosemary extract the shelf-life examples to increase more than six months.
Resumo:
The present study aimed production of a new product with various texture and sensory properties in chase of the impetus for increasing human consumption considering suitable resources of Kilka fish in Caspian Sea. Following deheading, gutting, and brining, common Kilka were battered in two different formulations, i.e. simple batter and tempura batter, via automated predusting machinery and then, they were fried through flash frying for 30 seconds at 170°C in sunflower oil after they were breaded with bread crumbs flour. The products were subjected to continuous freezing at -40°C and were kept at -18°C in cold storage for four months once they were packed. Chemical composition (protein, fat, moisture, and ash), fatty acid profiles (29 fatty acids), chemical indices of spoilage (peroxide value, thiobarbituric acid, free fatty acids, and volatile nitrogen), and microbial properties (total bacteria count and coliform count) were compared in fresh and breaded Kilka at various times before frying (raw breaded Kilka), after frying (zero-phase), and in various months of frozen storage (phases 1, 2, 3, and 4). Organoleptic properties of breaded Kilka (i.e. odor, taste, texture, crispiness, cohesiveness of batter) and general acceptability in the phases 0, 1, 2, 3, and 4 were evaluated. The results obtained from chemical composition and fatty acid profiles in common Kilka denoted that MUFA, PUFA, and SFA were estimated to be 36.96, 32.85, and 29.12 g / 100g lipid, respectively. Levels of ù-3 and ù-6 were 7.6 and 1.12 g / 100 gr lipid, respectively. Docosahexaonoic acid (20.79%) was the highest fatty acid in PUFA group. ù-3/ù-6 and PUFA/SFA ratios were 7.6 and 1.12, respectively. The high rates of the indices and high percentage of ù-3 fatty acid in common Kilka showed that the fish can be considered as invaluable nutritional and fishery resources and commonsensical consumption of the species may reduce the risk of cardiovascular diseases. Frying breaded Kilka affected overall fat and moisture contents so that moisture content in fried breaded Kilka decreased significantly compared to raw breaded Kilka, while it was absolutely reverse for fat content. Overall fat content in tempura batter treatment was significantly lower than that of simple batter treatment (P≤0.05). Presence of hydrocolloids, namely proteins, starch, gum, and other polysaccharides, in tempura batter may prohibit moisture evaporation and placement with oil during frying process in addition to boosting water holding capacity through confining water molecules. During frying process, fatty acids composition of breaded Kilka with various batters changed so that rates of some fatty acids such as Palmitic acid (C16:0), Stearic acid (C18:0), Oleic acid (C18:1 ù-9cis), and linoleic acid (C18:3 ù-3) increased considerably following frying; however, ù-3/ù-6, PUFA/SFA, and EPA+DHA/C16:0 ratios (Polyan index) decreased significantly after frying. ù-3/ù-6, PUFA/SFA, and EPA+DHA/C16:0 ratios in tempura batter treatment were higher than those of simple batter treatment which is an indicator of higher nutritional value of breaded Kilka with tempura batter. Significant elevations were found in peroxide, thiobarbituric acid, and free fatty acids in fried breaded Kilka samples compared to raw samples which points to fat oxidation during cooking process. Overall microorganism count and coliform count decreased following heating process. Both breaded Kilka samples were of high sanitation quality at zero-phase according to ICMSF Standard. The results acquired from organoleptic evaluation declared that odor, cohesiveness, and general acceptability indices, among others, had significant differences between the treatments (P≤0.05). In all evaluated properties, breaded Kilka with tempura batter in different phases gained higher scores than breaded Kilka with simple batter. During cold storage of various treatments of breaded Kilka, total lipid content, PUFA, MUFA, ù-3, ù- 3/ù-6, PUFA/SFA, Polyen index decreased significantly. The mentioned reductions in addition to significant elevation of spoilage indices, namely peroxide, thiobarbituric acid, and free fatty acids, during frozen storage, indicate to oxidation and enzymatic mechanism activity during frozen storage of breaded Kilka. Considering sensory evaluation at the end of the fourth month and TVB-N contents exceeded eligible rate in the fourth month, shelf life of the products during frozen storage was set to be three months at -18°C. The results obtained from statistical tests indicate to better quality of breaded Kilka processed with tempura batter compared to simple batter in terms of organoleptic evaluation, spoilage indices, and high quality of fat in various sampling phases.
Resumo:
Chemical ecology is the science of study and analysis of natural chemical products in result of biochemical processes in organisms and their reactions to variations of ecological and environmental parameters. In marine chemical ecology the existence of natural products in aquatic organisms and their ecological roles in marine animals and their reactions to environmental parameters variations will be studied. Among them, fatty acids are the most various and abundant ones in natural products which had been extracted from many marine organisms such as mollusks and algae. In this study selected animals were the dominant species of mollusks in intertidal zone of chabahar bay including gastropods, bivalves and polyplacophora classes. Nerita textilis and Turbo coronatus species are among gastropoda, Saccostrea cucullata is from bivalve, and Chiton lamyi is from polyplacophora. After seasonal sampling, separation and identification of natural products of these species, fatty acids had been isolated and identified by GC mass chromatography and their seasonal variations had been identified. In addition environmental factors of the location including pH, salinity temperature, dissolved oxygen, chlorophyll a and nutrients were measured monthly. Then the effect of seasonal variations of environmental factors on fatty acids had been studied by applying statistical analysis. GC/MS resulted thirteen fatty acids, which the most importants were myristic, stearic, oleic, palmitoleic, arachidonic and eicosapentaenoic acids. In majority of species palmitic acid was most abundant than the others and saturatedes had the most percentage levels than unsaturated ones. Although seasonal variations of identified fatty acids was not similar in species, but the majority of unsaturated ones had their maximum during winter, while saturated acids reached their maximum in summer. Statistical Analysis showed the strong correlations between Environmental factors and some fatty acids and temperature, nitrate, silicate and pH had strong correlations in all species. The species was studied from the point of lipid content and the results showed a good quality of lipid content in the selected species in the intertidal zone of Chabahar bay.
Resumo:
The first aim of this research was to identify fatty acids, amino acids composition of Thunnus tonggol roe and their changes during cold storage (-18'C). The second aim was to determine the changes of moisture, protein, fat and ash contents of the roe during one year cold storage (-18'C). 60 samples of longtail tuna (Thunnus tonggol) ovaries were randomly collected form Bandar-e-Abbas landings. The samples were frozen at-30'C and kept in cold store at -18'C for one year. According to a time table, the samples were examined for identification of fatty acids, amino acids, moisture, protein, fat, ash, peroxide and T.V.N. and their changes were evaluated during this time. The results showed that 26 fatty acids were identified. The unsaturated fatty acids (UFA) and saturated fatty acids (SFA) were 62.33 and 37.6%, respectively, in fresh roe. So that, DHA (C22:6) and oleic acid (C18:1) had high amounts (24.79 and 21.88%) among the UFA and palmitic acid (C16:0) was the most content (22.75%) among the SFA. The PUFA/SFA was 0.91. Also, 17 amino acids were identified that essential amino acids (EAA) and nonessential amino acids (NE) were 10478 and 7562 mg/100g, respectively, and E/NE was 1.38. Among the EAA and NE, lysine (2110mg/100g) and aspartic acid (1924 mg/100g) were the most contents. Also, results showed that moisture, ash, protein and fat contents were 72.74, 1.8, 19.88 and 4.53%, respectively, in fresh roe. The effects of freezing and cold storage on the roes showed that UFA and SFA contents have reached to 49.83 and 48.07%, respectively, at the end of cold storage. It indicated that these compounds change to each other during frozen storage. Also, n-3 and n-6 series of fatty acids were 32.75 and 1.61% in fresh roe. But their contents decreased to 22.96 and 1.25% at the end of period. Among the fatty acids, 22:6 and C16:0 had the most changes. The changes of fatty acids were significantly at 95% level except for C15:1, C18:3(n-3) and C20:4(n-6). All of the amino acids decreased in frozen storage and their changes were significantly (P<0.05). EAA was 7818 mg/100g and E/NE was 1.27 at the end of storage period. Among the amino acids, leucine and lysine had the most changes. Moisture, ash, protein and fat contents were 70.13, 1.82, 19.4 and 6.51%, respectively, at the end of storage period. The peroxide value and T.V.N. increased during storage. So that, their contents have reached to 5.86 mg/kg and 26.37 mg/100 g, respectively, at the end of frozen storage. The best shelf life of Thunnus tonggol roe was 6 or 7 months, because of lipid oxidation and increasing of peroxide.
Resumo:
This experiment was conducted to investigate the effect of using n-3 HUFA and Vitamin C enriched Artemia urmiana Nauplii Five difference treament were tested: for Caspian salmon (Salmo trutta caspius) larvae compare with artificial food in five treatment: (1) Artificial food, (2) Newly hatched Artemia (3) n-3 HUFA enriched Artemia (4) n-3 HUFA + 10% Ascorbyl Palmitate enriched Artemia (5) n-3 HUFA+20% Ascorbyl palmitate enriched Artemia during 15 days then all treatment were fed with artificial food during 20 days. In days of 15, larvae fed with newly hatched Artemia didn’t show significant difference of growth rate and survival compared to larvae fed with n-3 HUFA and Vitamn C enriched live food (p<0.05), However all treatment which fed live food have better growth rate and survival compred to larvae fed artificial food. Larvae fed with enriched Artemia with n-3 HUFA + 20% Ascorbyl palmitate has best result of temperature resistance at 26'C and 28'C. There is not significant difference between treatment (1) and (2), (3) and in this manner between (2), (3) and (4), (5) (P>0.05). In days of 35, larvae fed n-3 HUFA + 10% and 20% Ascorbyl pamlitate show better wet weight and dry weight compared to other treatment (P<0.05). Larvae fed n-3 HUFA Artemia showed significant difference compared to treatment (1) and (2), However there is not significant difference between treatment (1) and (2). Larvae fed artificial food show less and significant difference of survival compared to other treatment (P<0.05). Larvae fed artificial food show least of temperature resistance at 26'C and 28'C , However, there is not significant difference between all treatment (P<0.05).
Resumo:
At the fishing season, in 2000, samples of species persian sturgeon (A. persicus), Severjuga (A. stellatus) and Mullet (L. aurata), were caught from the southern coasts of Caspian Sea and were freezes and preserved in the cold storage for one year They have also become biometery. The tissue's fillet were identified in order to determined the Fatty Acids. This was done during one year, frequently, fresh, two weeks after freezing and then monthly, respectively. So, after the extraction of lipids from the tissues and methylation, was injected to the gas-liquid Chromatography. After calibration, identified Fatty Acids were compared with standards according to their Retention Times. Peroxid value, lipid content and humidity were controlled. The unsaturated Fatty acids had The most amount, and a plenty of Polyunsaturated Fatty acids (PUFA) were observed, so that linoleic (C18:2), a-linolenic (C18:3), Arashidonic (C20:4), EPA (C20:5) and DHA (C22:6) Fatty acids had high amounts. The w-3, PUFA were more in comparison with w-6. The effects of freezing and cold storing on the fish fatty acids , were evaluated by the statistical tests , like SPSS, Tukey, Homogenous and Anova, and showed that in some species, a group of Fatty acids, specially PUFA, had some variation. The peroxide value that indicates the lipid deterioration, increased during toring. So, the best term if preserving in the cold storage, were determined and their Nutrition value and Medical applications due to their consumption were investigated.
Resumo:
The compositions and contents of astaxanthin esters and fatty acids in four types of Haematococcus pluvialis cells were studied by HPLC and GC-MS. Results showed that the synthesis and accumulation of astaxanthin was independent of the formation of cysts, but was highly correlated with the synthesis and accumulation of fatty acids, though it is an well known phenomenon that the accumulation of astaxanthin is usually accompanied by the formation of cyst. The red cysts contain more than 30% of fatty acids, with 81% of the unsaturated fatty acids. Taken together, besides a resource of astaxanthin, H. pluvialis would be a good resource of valuable fatty acids.
Resumo:
In order to examine how carbon and nitrogen status of a macrophyte may affect its total phenolics (TP) production, the contents of free amino acids (FAA), soluble carbohydrate (SC) and TP were examined in leaves of seven submersed, four floating-leaved, and four emergent macrophytes. The floating-leaved and emergent macrophytes had much higher contents of SC and TP than the submersed macrophytes. The contents of FAA were not significantly different among the submersed, floating-leaved, and emergent macrophytes. Correlations among the contents of FAA, SC, and TP indicated that the production of TP was more dependent on the SC content than on the FAA content.
Resumo:
Here we reported the fatty-acids and their δ 13C values in seep carbonates collected from Green Canyon lease block 185 (GC 185; Sample GC-F) at upper continental slope (water depth: ∼540 m), and Alaminos Canyon lease block 645 (GC 645; Sample AC-E) at lower continental slope (water depth: ∼2200 m) of the Gulf of Mexico. More than thirty kinds of fatty acids were detected in both samples. These fatty acids are maximized at C16. There is a clear even-over-odd carbon number predominance in carbon number range. The fatty acids are mainly composed of n-fatty acids, iso-/anteiso-fatty acids and terminally branched odd-numbered fatty acids (iso/anteiso). The low δ 13C values (−39.99‰ to.32.36‰) of n-C12:0, n-C13:0, i-C14:0and n-C14:0 suggest that they may relate to the chemosynthetic communities at seep sites. The unsaturated fatty acids n-C18:2 and C18:1Δ9 have the same δ 13C values, they may originate from theBeggiatoa/Thioploca. Unlike other fatty acids, the terminally branched fatty acids (iso/anteiso) show lowerδ 13C values (as low as −63.95‰) suggesting a possible relationship to sulfate reducing bacteria, which is common during anaerobic oxidation of methane at seep sites.
Resumo:
The biosynthesis of glycolipids in E. fasciculatus was studied by C-14 label and chase. The fatty acids in sulphoquinovosyl diacylglycerol (SQDG) were almost 16-carbon and 18-carbon ones. In addition to the two fatty acids, monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG) contained 8.5 mol% and 31.0 mol% of eicosapentaenoic acid (20 : 5), respectively, and this fatty acid was usually distributed in the sn-1 position of the glycerol backbone. When plants were incubated with [2-C-14] acetate, differences existed in the positional distribution of the labeled fatty acids in sn-1 and sn-2 among the three glycerolipids. In SQDG C-14-labeled fatty acids were distributed uniformly in the sn-1 and sn-2 positions. In DGDG, C-14-labeled fatty acids were mainly distributed in the sn-2 position. In MGDG, the radioactivity of fatty acids in sn-1 position was far greater than that in sn-2 position after a 30 min pulse label, and the difference in radioactivity between the two positions decreased rapidly. The above results indicated that differences in the positional distribution of C-14-labeled fatty acids between sn-1 and sn-2 positions might be related to 20 : 5 and the biosynthesis of DGDG. Our results also suggested that E. fasciculatus had the same DGDG biosynthetic pathway as that in higher plants and galactosyl transferase was selective for MGDC.