974 resultados para Frailty phenotype
Resumo:
BACKGROUND: Evidence is accumulating that telomere length is a good predictor of life expectancy, especially early in life, thus calling for determining the factors that affect telomere length at this stage. Here, we investigated the relative influence of early growth conditions and origin (genetics and early maternal effects) on telomere length of collared flycatchers (Ficedula albicollis) at fledging. We experimentally transferred hatchlings among brood triplets to create reduced, control (i.e. unchanged final nestling number) and enlarged broods. RESULTS: Although our treatment significantly affected body mass at fledging, we found no evidence that increased sibling competition affected nestling tarsus length and telomere length. However, mixed models showed that brood triplets explained a significant part of the variance in body mass (18%) and telomere length (19%), but not tarsus length (13%), emphasizing that unmanipulated early environmental factors influenced telomere length. These models also revealed low, but significant, heritability of telomere length (h(2) = 0.09). For comparison, the heritability of nestling body mass and tarsus length was 0.36 and 0.39, respectively, which was in the range of previously published estimates for those two traits in this species. CONCLUSION: Those findings in a wild bird population demonstrate that telomere length at the end of the growth period is weakly, but significantly, determined by genetic and/or maternal factors taking place before hatching. However, we found no evidence that the brood size manipulation experiment, and by extension the early growth conditions, influenced nestling telomere length. The weak heritability of telomere length suggests a close association with fitness in natural populations.
Resumo:
The introduction of Next Generation Sequencing (NGS) facilitated the task of localizing DNA variation and identifying the genetic cause of yet unsolved Mendelian disorders. Using Whole Exome Capture method and NGS, we identified the causative genetic aberration responsible for a number of monogenic disorders previously undetermined. Due to the novelty of the NGS method we benchmarked different algorithms to assess their merits and defects. This allowed us to establish a pipeline that we successfully used to pinpoint genes responsible for a form of West's syndrome, a Complex Intellectual Disability syndrome associated with patellar dislocation and celiac disease, and correcting some erroneous molecular diagnosis of Alport's syndrome in a Saudi Arabian family.
Resumo:
Mast cells (MC) are important in the numerous physiological processes of homeostasis and disease. Most notably, MC are critical effectors in the development and exacerbation of allergic disorders. Nitric oxide (NO) is a diatomic radical produced by nitric oxide synthase (NOS), and has pluripotent cell signaling and cytotoxic properties. NO can influence many MC functions. Recent evidence shows the source of this NO can be from the mast cell itself. Governing the production of this endogenous NO, through alterations in the expression of tetrahydrobiopterin (BH4), a NOS cofactor, has stabilizing effects on MC degranulation. Furthermore, NO regulates the synthesis and secretion of de novo generated mediators, including leukotrienes and chemokines. These novel observations add to the growing body of knowledge surrounding the role of NO in the MC.
Resumo:
Purpose: To assess the clinical phenotype in two consanguineous Tunisian families with non syndromic autosomic recessive retinitis Pigmentosa (arRP) caused by an USH2A mutation.Methods: All accessible members of family A and B were included and underwent full ophthalmic examination with best corrected Snellen visual acuity, kinetic visual field testing, fundus photography, optical coherence tomography and full field electroretinography. Haplotype analyses were used to test linkage in the families to 20 arRP loci, including ABCA4, LRAT, USH2A, RP29, CERKL, CNGA1, CNGB1, CRB1, EYS, RP28, MERTK, NR2E3, PDE6A, PDE6B, RGR, RHO, RLBP1, TULP1. In addition, index patients were sent to AsperOphthalmics for arRP mutation screening.Results: Twenty three patients from the two families were ascertained for the study. Eight of the 23 members were clinically affected with arRP without hearing loss. Age range at baseline was 35 to 63 years (mean age was 46.5 years). For all affected members, night blindness appeared during the second decade. Visual acuity at baseline ranged from 20/50 to 20/32. Kinetic visual field was severely constricted. Fundus examination revealed typical RP changes with bone spicule-shaped pigment deposits in the mid periphery along with atrophy of the retina, narrowing of the vessels and waxy optic discs. Tomograms showed a thinning and even loss the outer nuclear layer of the fovea. ERG was unrecordable in scotopic conditions and the cone responses were markedly hypovolted. Haplotype analysis did not reveal any homozygosity. Screening at AsperOphthalmis showed a compound heterozygous [p.A1953G]+[p.I5126T] in family A and [p.G713R]+[p.W4149R] in family B.Conclusions: For these families, changes were typical of those that have been described in patients with moderate to severe forms of non syndromic recessive RP. Our findings support the need to consider possible involvement of USH2A not only in patients with Usher syndrome but also in patients with non syndromc arRP. Despite consanguinity, the presence of non-homozygous mutants illustrates the complexity of molecular analysis.
Resumo:
The hypothalamic damage induced by neonatal treatment with monosodium l-glutamate (MSG) induces several metabolic abnormalities, resulting in a rat hyperleptinemic-hyperadipose phenotype. This study was conducted to explore the impact of the neonatal MSG treatment, in the adult (120 days old) female rat on: (a) the in vivo and in vitro mineralocorticoid responses to ACTH and angiotensin II (AII); (b) the effect of leptin on ACTH- and AII-stimulated mineralocorticoid secretions by isolated corticoadrenal cells; and (c) abdominal adiposity characteristics. Our data indicate that, compared with age-matched controls, MSG rats displayed: (1) enhanced and reduced mineralocorticoid responses to ACTH and AII treatments, respectively, effects observed in both in vivo and in vitro conditions; (2) adrenal refractoriness to the inhibitory effect of exogenous leptin on ACTH-stimulated aldosterone output by isolated adrenocortical cells; and (3) distorted omental adiposity morphology and function. This study supports that the adult hyperleptinemic MSG female rat is characterized by enhanced ACTH-driven mineralocorticoid function, impaired adrenal leptin sensitivity, and disrupted abdominal adiposity function. MSG rats could counteract undesirable effects of glucocorticoid excess, by developing a reduced AII-driven mineralocorticoid function. Thus, chronic hyperleptinemia could play a protective role against ACTH-mediated allostatic loads in the adrenal leptin resistant, MSG female rat phenotype.
Resumo:
Three Enterococcus faecalis and one Enterococcus faecium strains were characterized by plasmid profile, pulsed-field gel electrophoresis (PFGE) and determination of antimicrobial minimal inhibitory concentrations. VanA elements were characterized by Long PCR, overlapping PCR and DNA sequencing. Enterococcal strains showed resistance to vancomycin and harbored the vanA gene, and three these were teicoplanin susceptible while one showed intermediate resistance to teicoplanin. Two E. faecalis strains showed indistinguishable PFGE profile while the third was unrelated. E. faecalis strains showed a deletion in the right terminal region of the Tn1546-like element. The E. faecium strain showed an insertion element in the vanXY intergenic region. Mutations in VanA elements were not found. Rearrangements in the VanA element could be responsible for incongruities in genotype and phenotype in these strains.
Resumo:
C(4) photosynthesis is an adaptation over the classical C(3) pathway that has evolved multiple times independently. These convergences are accompanied by strong variations among the independent C(4) lineages. The decarboxylating enzyme used to release CO(2) around Rubisco particularly differs between C(4) species, a criterion used to distinguish three distinct biochemical C(4) subtypes. The phosphoenolpyruvate carboxykinase (PCK) serves as a primary decarboxylase in a minority of C(4) species. This enzyme is also present in C(3) plants, where it is responsible for nonphotosynthetic functions. The genetic changes responsible for the evolution of C(4)-specific PCK are still unidentified. Using phylogenetic analyses on PCK sequences isolated from C(3) and C(4) grasses, this study aimed at resolving the evolutionary history of C(4)-specific PCK enzymes. Four independent evolutions of C(4)-PCK were shown to be driven by positive selection, and nine C(4)-adaptive sites underwent parallel genetic changes in different C(4) lineages. C(4)-adaptive residues were also observed in C(4) species from the nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME) subtype and particularly in all taxa where a PCK shuttle was previously suggested to complement the NADP-ME pathway. Acquisitions of C(4)-specific PCKs were mapped on a species tree, which revealed that the PCK subtype probably appeared at the base of the Chloridoideae subfamily and was then recurrently lost and secondarily reacquired at least three times. Linking the genotype to subtype phenotype shed new lights on the evolutionary transitions between the different C(4) subtypes.
Resumo:
BACKGROUND: Frailty, as defined by the index derived from the Cardiovascular Health Study (CHS index), predicts risk of adverse outcomes in older adults. Use of this index, however, is impractical in clinical practice. METHODS: We conducted a prospective cohort study in 6701 women 69 years or older to compare the predictive validity of a simple frailty index with the components of weight loss, inability to rise from a chair 5 times without using arms, and reduced energy level (Study of Osteoporotic Fractures [SOF index]) with that of the CHS index with the components of unintentional weight loss, poor grip strength, reduced energy level, slow walking speed, and low level of physical activity. Women were classified as robust, of intermediate status, or frail using each index. Falls were reported every 4 months for 1 year. Disability (> or =1 new impairment in performing instrumental activities of daily living) was ascertained at 4(1/2) years, and fractures and deaths were ascertained during 9 years of follow-up. Area under the curve (AUC) statistics from receiver operating characteristic curve analysis and -2 log likelihood statistics were compared for models containing the CHS index vs the SOF index. RESULTS: Increasing evidence of frailty as defined by either the CHS index or the SOF index was similarly associated with an increased risk of adverse outcomes. Frail women had a higher age-adjusted risk of recurrent falls (odds ratio, 2.4), disability (odds ratio, 2.2-2.8), nonspine fracture (hazard ratio, 1.4-1.5), hip fracture (hazard ratio, 1.7-1.8), and death (hazard ratio, 2.4-2.7) (P < .001 for all models). The AUC comparisons revealed no differences between models with the CHS index vs the SOF index in discriminating falls (AUC = 0.61 for both models; P = .66), disability (AUC = 0.64; P = .23), nonspine fracture (AUC = 0.55; P = .80), hip fracture (AUC = 0.63; P = .64), or death (AUC = 0.72; P = .10). Results were similar when -2 log likelihood statistics were compared. CONCLUSION: The simple SOF index predicts risk of falls, disability, fracture, and death as well as the more complex CHS index and may provide a useful definition of frailty to identify older women at risk of adverse health outcomes in clinical practice.
Resumo:
The genomic architecture of the 10q22q23 region is characterised by two low-copy repeats (LCRs3 and 4), and deletions in this region appear to be rare. We report the clinical and molecular characterisation of eight novel deletions and six duplications within the 10q22.3q23.3 region. Five deletions and three duplications occur between LCRs3 and 4, whereas three deletions and three duplications have unique breakpoints. Most of the individuals with the LCR3-4 deletion had developmental delay, mainly affecting speech. In addition, macrocephaly, mild facial dysmorphisms, cerebellar anomalies, cardiac defects and congenital breast aplasia were observed. For congenital breast aplasia, the NRG3 gene, known to be involved in early mammary gland development in mice, is a putative candidate gene. For cardiac defects, BMPR1A and GRID1 are putative candidate genes because of their association with cardiac structure and function. Duplications between LCRs3 and 4 are associated with variable phenotypic penetrance. Probands had speech and/or motor delays and dysmorphisms including a broad forehead, deep-set eyes, upslanting palpebral fissures, a smooth philtrum and a thin upper lip. In conclusion, duplications between LCRs3 and 4 on 10q22.3q23.2 may lead to a distinct facial appearance and delays in speech and motor development. However, the phenotypic spectrum is broad, and duplications have also been found in healthy family members of a proband. Reciprocal deletions lead to speech and language delay, mild facial dysmorphisms and, in some individuals, to cerebellar, breast developmental and cardiac defects.
Resumo:
A child with clinical features associated a trisomy for the distal part of 9q was shown to have the following abnormal chromosome complement : 47,XY,+t)X;9) (Xpter yields Xq24:9q31 yields 9qter), inv 9(p11q13), var 14 (14pQFQ34).
Resumo:
Friedreich's ataxia (FRDA), the most common autosomal recessive ataxia, is characterised by progressive ataxia with dysarthria of speech, loss of deep-tendon reflexes, impaired vibratory and proprioceptive sensations and corticospinal weakness with a Babinski's sign. Patients eventually also develop kyphoscoliosis, cardiomyopathy and diabetes mellitus. The disease is a GAA repeat disorder resulting in severely reduced levels of frataxin, with secondary increased sensitivity to oxidative stress. The anti-oxidative drug, idebenone, is effective against FRDA-associated cardiomyopathy. We provide detailed clinical, electrophysiological and biochemical data from 20 genetically confirmed FRDA patients and have analysed the relationship between phenotype, genotype and malondialdehyde (MDA), which is a marker of superoxide formation. We assessed the effects of idebenone biochemically by measuring blood MDA and clinically by serial measurements of the International Cooperative Ataxia Rating Scale (ICARS). The GAA repeat length influenced the age at onset (p <0.001), the severity of ataxia (p = 0.02), the presence of cardiomyopathy (p = 0.04) and of low-frequency hearing loss (p = 0.009). Multilinear regression analysis showed (p = 0.006) that ICARS was dependent on the two variables of disease duration (p = 0.01) and size of the GAA expansion (p = 0.02). We found no correlation to bilateral palpebral ptosis, visual impairment, diabetes mellitus or skeletal deformities, all of which appear to be signs of disease progression rather than severity. We discuss more thoroughly two underrecognised clinical findings: palpebral ptosis and GAA length-dependent low-frequency hearing loss. The average ICARS remained unchanged in 10 patients for whom follow-up on treatment was available (mean 2.9 years), whereas most patients treated with idebenone reported an improvement in dysarthria (63%), hand dexterity (58%) and fatigue (47%) after taking the drug for several weeks or months. Oxidative stress analysis showed an unexpected increase in blood MDA levels in patients on idebenone (p = 0.04), and we discuss the putative underlying mechanism for this result, which could then explain the unique efficacy of idebenone in treating the FRDA-associated cardiomyopathy, as opposed to other antioxidative drugs. Indeed, idebenone is not only a powerful stimulator of complexes II and III of the respiratory chain, but also an inhibitor of complex I activity, then promoting superoxide formation. Our preliminary clinical observations are the first to date supporting an effect of idebenone in delaying neurological worsening. Our MDA results point to the dual effect of idebenone on oxidative stress and to the need for controlled studies to assess its potential toxicity at high doses on the one hand, and to revisit the exact mechanisms underlying the physiopathology of Friedreich's ataxia on the other hand, while recent reports suggest non-oxidative pathophysiology of the disease.
Resumo:
Purpose: To assess the clinical phenotype in two consanguineous Tunisian families with non syndromic autosomic recessive retinitis Pigmentosa (RP) caused by a PDE6A and PDE6B mutations.Methods: All accessible familiy members were included. Affected members from each family underwent full ophthalmic examination with best corrected Snellen visual acuity, fundus photography, optical coherence tomography and full field electroretinography. Haplotype analyses were used to test linkage in the family to 20 arRP loci, including ABCA4, LRAT, USH2A, RP29, CERKL, CNGA1, CNGB1, CRB1, EYS, RP28, MERTK, NR2E3, PDE6A, PDE6B, RGR, RHO, RLBP1, TULP1. All exons and intron-exon junctions of candidate genes not excluded by haplotype analysis were PCR amplified and directly sequenced.Results: Two family members were clinically affected with arRP in each pedigree. Age range at baseline was 43 to 54 years (mean age at baseline was 48 years). For all affected members, night blindness appeared since early childhood (at 4-5 years old) without nystagmus but with a severe progression and mild to severe loss of central vision at the second decade. Visual acuity at baseline ranged from 20/500 to 20/63. Kinetic visual field was severely constricted for one patient and unrealizable for the others. Funduscopic examination revealed bone spicule-shaped pigment deposits in the mid periphery along with atrophy of the retina, narrowing of the vessels and waxy optic discs. Tomograms showed macular atrophy in both cases of family A, and macular edema in the patients of family B. ERG showed a loss of both rod and cone responses. Haplotype analysis revealed homozygosity for microsatellites markers flanking PDE6A and PDE6B in family A and B, respectively. Sequencing of PDE6A in family A showed a homozygous R102S mutation. In family B, sequencing identified a D600N homozygous mutation. Both mutations cosegregated within each respective pedigree.Conclusions: For these families, affected members developed a severe form of non syndromic arRP. The two reported mutations have already been described. Our data further contribute to our understanding of genotype-phenotype correlations.
Resumo:
RAPPORT DE SYNTHESE La dégénérescence maculaire liée à l'âge (DMLA) est une maladie très fréquente qui représente la cause principale de cécité légale chez les sujets de plus de 50 ans en Occident. Bien que l'étiologie exacte de cette affection ne soit pas complètement connue, des facteurs environnementaux et génétiques influencent sa survenue et son évolution. A ce sujet, de récentes recherches ont notamment montré une association marquée à une variante du gène CFH, Y402H. Nous ignorons toutefois si le polymorphisme Y402H est associé à un phénotype particulier de la maladie. Cette étude a pour but d'établir si cette variante du gène CFH est associée à certaines caractéristiques phénotypiques précoces. L'étude porte sur quatre cent vingt patients atteints de DMLA qui ont été phénotypés sur la base de photographie du fond d'oeil (International Classification and Grading system for age- related macular degeneration) et génotypés à partir d'ADN leucocytaire à la recherche de la variante Y402H du gène CFH. Ces données ont ensuite fait l'objet d'une analyse statistique de l'association génotype-phénotype (le génotype de 50 sujets-contrôle a été utilisé pour confirmer l'association du polymorphisme avec la DMLA). Les résultats obtenus, corrigés pour l'âge et le sexe, montrent un odds ratio (OR) de développer une DMLA de 2.95 en présence d'au moins un allèle à risque C et de 9.05 pour les homozygotes CC. Par contre, aucune influence n'est observée sur les stades de la maladie (précoce-tardif)? Une association significative entre le génotype CC et la présence de druses périphériques (p=0.028), ainsi que la localisation centrale des druses (p=0,049) a été mise en évidence. Aucune autre tendance n'a été dégagée concernant les critères restants (taille, surface totale recouverte, localisation nasale des druses) ou les changements pigmentaires. Cette étude a permis de confirmer l'association entre la variante Y4G2H et la DMLA dans la population suisse et de conclure que la variante Y402H du gène CFH présente une association géno-phénotypique pour certaines caractéristiques des druses. Il est probable que d'autres facteurs génétiques encore influencent le phénotype de la DMLA. De nouvelles recherches seront nécessaires pour préciser l'influence de ces autres facteurs génétiques ou environnementaux, en vue d'une meilleure compréhension de la pathogenèse de cette affection, et pour développer des mesures thérapeutiques et prophylactiques adaptées.
Resumo:
Vax1 and Vax2 have been implicated in eye development and the closure of the choroid fissure in mice and zebrafish. We sequenced the coding exons of VAX1 and VAX2 in 70 patients with anophthalmia/microphthalmia. In VAX1, we observed homozygosity for two successive nucleotide substitutions c.453G>A and c.454C>A, predicting p.Arg152Ser, in a proband of Egyptian origin with microphthalmia, small optic nerves, cleft lip/palate and corpus callosum agenesis. This mutation affects an invariant residue in the homeodomain of VAX1 and was absent from 96 Egyptian controls. It is likely that the mutation results in a loss of function, as the mutation results in a phenotype similar to the Vax1 homozygous null mouse. We did not identify any mutations in VAX2. This is the first description of a phenotype associated with a VAX1 mutation in humans and establishes VAX1 as a new causative gene for anophthalmia/microphthalmia. ©2011 Wiley Periodicals, Inc.