996 resultados para Fort Rock Volcanic Field
Resumo:
September 17, 1960.
Resumo:
Bibliography included in abstract.
Resumo:
Prepared in cooperation with the U.S. Bureau of Reclamation.
Resumo:
"November 1995."
Resumo:
Shipping list no.: 2002-0165-P.
Resumo:
Caption title.
Resumo:
"August 2000"--P. [2] of cover.
Resumo:
April 12, 1958.
Resumo:
September 17, 1955.
Resumo:
A sample of run-off water from a vertical, slate rock surface in Wales, U.K. contained abundant fragments of the lichen Parmelia glabratula ssp. fuliginosa from about 0.6 to 8.0 mm in diameter, a few fragments of Parmelia conspersa from 0.6 to 4.0 mm in diameter and a large number of unidentified propagules from 0.2 to 0.5 mm in diameter. The colonization of permanent plots on the rock surface was studied over six years. At the end of the experiment relatively few thalli of Parmelia conspersa, Parmelia glabratula ssp. fuliginosa and Buellia aethalea had established in plots on undisturbed and newly-exposed slate. Fragments (2 mm in diameter) of Parmelia conspersa placed on horizontal pieces of slate survived up to 120 days in cracks, 20 days on a thin smear of bird droppings but only 2-3 days on smooth slate, against small joints in the rock or in small holes. Isidia of Parmelia conspersa placed on horizontal pieces of slate established equally in plots on smooth undisturbed slate and in plots on the surface exposed after the removal of large Parmelia conspersa thalli, but less well on newly-exposed slate. These results suggest that lichen propagules are abundant in run-off water but establishment is a hazardous process. This may be attributable to a shortage of suitable sites on the substratum for attachment of propagules.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Ocean Drilling Program (ODP) Leg 193 recovered core from the active PACMANUS hydrothermal field (eastern Manus Basin, Papua New Guinea) that provided an excellent opportunity to study mineralization related to a seafloor hydrothermal system hosted by felsic volcanic rocks. The purpose of this work is to provide a data set of mineral chemistry of the sulfide-oxide mineralization and associated gold occurrence in samples drilled at Sites 1188 and 1189. PACMANUS consists of five active vent sites, namely Rogers Ruins, Roman Ruins, Satanic Mills, Tsukushi, and Snowcap. In this work two sites were studied: Snowcap and Roman Ruins. Snowcap is situated in a water depth of 1670 meters below sea level [mbsl], covers a knoll of dacite-rhyodacite lava, and is characterized by low-temperature diffuse venting. Roman Ruin lies in a water depth of 1693-1710 mbsl, is 150 m across, and contains numerous large, active and inactive, columnar chimneys. Sulfide mineralogy at the Roman Ruins site is dominated by pyrite with lesser amounts of chalcopyrite, sphalerite, pyrrhotite, marcasite, and galena. Sulfide minerals are relatively rare at Snow Cap. These are dominated by pyrite with minor chalcopyrite and sphalerite and traces of pyrrhotite. Native gold has been found in a single sample from Hole 1189B (Roman Ruins). Oxide minerals are represented by Ti magnetite, magnetite, ilmenite, hercynite (Fe spinel), and less abundant Al-Mg rich chromite (average = 10.6 wt% Al2O3 and 5.8 wt% MgO), Fe-Ti oxides, and a single occurrence of pyrophanite (Mn Ti O3). Oxide mineralization is more developed at Snowcap, whereas sulfide minerals are more extensive and show better development at Roman Ruins. The mineralogy was obtained mainly by a detailed optical microscopy study. Oxide mineral identifications were confirmed by X-ray diffraction, and mineral chemistry was determined by electron probe microanalyses.
Resumo:
Mode of access: Internet.