850 resultados para Formulations of ceramic body
Resumo:
The extinction of dinosaurs at the Cretaceous/Paleogene (K/Pg) boundary was the seminal event that opened the door for the subsequent diversification of terrestrial mammals. Our compilation of maximum body size at the ordinal level by sub-epoch shows a near-exponential increase after the K/Pg. On each continent, the maximum size of mammals leveled off after 40 million years ago and thereafter remained approximately constant. There was remarkable congruence in the rate, trajectory, and upper limit across continents, orders, and trophic guilds, despite differences in geological and climatic history, turnover of lineages, and ecological variation. Our analysis suggests that although the primary driver for the evolution of giant mammals was diversification to fill ecological niches, environmental temperature and land area may have ultimately constrained the maximum size achieved.
Resumo:
Two experiments examined imitation of lateralised body movement sequences presented at six viewing angles (0º, 60º, 120º, 180º, 240º, and 300º rotation relative to the participant’s body). Experiment 1 found that, when participants were instructed simply to ‘‘do what the model does’’, at all viewing angles they produced more actions using the same side of the body as the model (anatomical matches), than actions using the opposite side (anatomical non-matches). In Experiment 2 participants were instructed to produce either anatomical matches or anatomical non-matches of observed actions. When the model was viewed from behind (0º), the anatomically matching group were more accurate than the anatomically non-matching group, but the non-matching group was superior when the model faced the participant (180º and 240º). No reliable differences were observed between groups at 60º, 120º, and 300º. In combination, the results of Experiments 1 and 2 suggest that, when they are confronting a model, people choose to imitate the hard way; they attempt to match observed actions anatomically, in spite of the fact that anatomical matching is more subject to error than anatomical non-matching.
Resumo:
We prove the equivalence of three weak formulations of the steady water waves equations, namely: the velocity formulation, the stream function formulation and the Dubreil-Jacotin formulation, under weak Hölder regularity assumptions on their solutions.
Resumo:
This invention relates to solid formulations for the oral delivery of live microbial cells which comprise dried viable cells and small amounts of a bile acid binding agent, for example, an anion exchange resin such as cholestyramine. The presence of bile acid binding agents in the formulation significantly increases the survival of the cells in the intestinal tract and facilitates delivery of the viable cells to the intestine.
Resumo:
Although tactile representations of the two body sides are initially segregated into opposite hemispheres of the brain, behavioural interactions between body sides exist and can be revealed under conditions of tactile double simultaneous stimulation (DSS) at the hands. Here we examined to what extent vision can affect body side segregation in touch. To this aim, we changed hand-related visual input while participants performed a go/no-go task to detect a tactile stimulus delivered to one target finger (e.g., right index), stimulated alone or with a concurrent non-target finger either on the same hand (e.g., right middle finger) or on the other hand (e.g., left index finger = homologous; left middle finger = non-homologous). Across experiments, the two hands were visible or occluded from view (Experiment 1), images of the two hands were either merged using a morphing technique (Experiment 2), or were shown in a compatible vs incompatible position with respect to the actual posture (Experiment 3). Overall, the results showed reliable interference effects of DSS, as compared to target-only stimulation. This interference varied as a function of which non-target finger was stimulated, and emerged both within and between hands. These results imply that the competition between tactile events is not clearly segregated across body sides. Crucially, non-informative vision of the hand affected overall tactile performance only when a visual/proprioceptive conflict was present, while neither congruent nor morphed hand vision affected tactile DSS interference. This suggests that DSS operates at a tactile processing stage in which interactions between body sides can occur regardless of the available visual input from the body.
Resumo:
We consider the Dirichlet and Robin boundary value problems for the Helmholtz equation in a non-locally perturbed half-plane, modelling time harmonic acoustic scattering of an incident field by, respectively, sound-soft and impedance infinite rough surfaces.Recently proposed novel boundary integral equation formulations of these problems are discussed. It is usual in practical computations to truncate the infinite rough surface, solving a boundary integral equation on a finite section of the boundary, of length 2A, say. In the case of surfaces of small amplitude and slope we prove the stability and convergence as A→∞ of this approximation procedure. For surfaces of arbitrarily large amplitude and/or surface slope we prove stability and convergence of a modified finite section procedure in which the truncated boundary is ‘flattened’ in finite neighbourhoods of its two endpoints. Copyright © 2001 John Wiley & Sons, Ltd.
Resumo:
There is accumulating evidence that macroevolutionary patterns of mammal evolution during the Cenozoic follow similar trajectories on different continents. This would suggest that such patterns are strongly determined by global abiotic factors, such as climate, or by basic eco-evolutionary processes such as filling of niches by specialization. The similarity of pattern would be expected to extend to the history of individual clades. Here, we investigate the temporal distribution of maximum size observed within individual orders globally and on separate continents. While the maximum size of individual orders of large land mammals show differences and comprise several families, the times at which orders reach their maximum size over time show strong congruence, peaking in the Middle Eocene, the Oligocene and the Plio-Pleistocene. The Eocene peak occurs when global temperature and land mammal diversity are high and is best explained as a result of niche expansion rather than abiotic forcing. Since the Eocene, there is a significant correlation between maximum size frequency and global temperature proxy. The Oligocene peak is not statistically significant and may in part be due to sampling issues. The peak in the Plio-Pleistocene occurs when global temperature and land mammal diversity are low, it is statistically the most robust one and it is best explained by global cooling. We conclude that the macroevolutionary patterns observed are a result of the interplay between eco-evolutionary processes and abiotic forcing
Resumo:
Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec[AU1: Add manufacturer name and location.]; 260 g of oil/ kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6 g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4 kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.
Resumo:
Human Body Thermoregulation Models have been widely used in the field of human physiology or thermal comfort studies. However there are few studies on the evaluation method for these models. This paper summarises the existing evaluation methods and critically analyses the flaws. Based on that, a method for the evaluating the accuracy of the Human Body Thermoregulation models is proposed. The new evaluation method contributes to the development of Human Body Thermoregulation models and validates their accuracy both statistically and empirically. The accuracy of different models can be compared by the new method. Furthermore, the new method is not only suitable for the evaluation of Human Body Thermoregulation Models, but also can be theoretically applied to the evaluation of the accuracy of the population-based models in other research fields.
Resumo:
Gastrointestinal (GI) models that mimic physiological conditions in vitro are important tools for developing and optimizing biopharmaceutical formulations. Oral administration of live attenuated bacterial vaccines (LBV) can safely and effectively promote mucosal immunity but new formulations are required that provide controlled release of optimal numbers of viable bacterial cells, which must survive gastrointestinal transit overcoming various antimicrobial barriers. Here, we use a gastro-small intestine gut model of human GI conditions to study the survival and release kinetics of two oral LBV formulations: the licensed typhoid fever vaccine Vivotif comprising enteric coated capsules; and an experimental formulation of the model vaccine Salmonella Typhimurium SL3261 dried directly onto cast enteric polymer films and laminated to form a polymer film laminate (PFL). Neither formulation released significant numbers of viable cells when tested in the complete gastro-small intestine model. The poor performance in delivering viable cells could be attributed to a combination of acid and bile toxicity plus incomplete release of cells for Vivotif capsules, and to bile toxicity alone for PFL. To achieve effective protection from intestinal bile in addition to effective acid resistance, bile adsorbent resins were incorporated into the PFL to produce a new formulation, termed BR-PFL. Efficient and complete release of 4.4x107 live cells per dose was achieved from BR-PFL at distal intestinal pH, with release kinetics controlled by the composition of the enteric polymer film, and no loss in viability observed in any stage of the GI model. Use of this in vitro GI model thereby allowed rational design of an oral LBV formulation to maximize viable cell release.
Resumo:
Detecting both the majors genes that control the phenotypic mean and those controlling phenotypic variance has been raised in quantitative trait loci analysis. In order to mapping both kinds of genes, we applied the idea of the classic Haley-Knott regression to double generalized linear models. We performed both kinds of quantitative trait loci detection for a Red Jungle Fowl x White Leghorn F2 intercross using double generalized linear models. It is shown that double generalized linear model is a proper and efficient approach for localizing variance-controlling genes. We compared two models with or without fixed sex effect and prefer including the sex effect in order to reduce the residual variances. We found that different genes might take effect on the body weight at different time as the chicken grows.
Resumo:
Physical Activity (PA) and functional fitness (FF) are predictors of a healthy and independent lifestyle in older adults. The purpose of this study was: (1) to construct reference values for FF; (2) to describe sex- and age-related changes in FF, balance, gait, PA, body composition, and bone health/strength; and (3) to determine their variation and co-variation with respect to PA. This cross-sectional study included 401 males and 401 females aged 60-79 years old. FF was assessed using the Senior Fitness test and balance by the Fullerton Advance Balance scale (FAB). Gait parameters: gait velocity (GV), stride length (SL), cadence and gait stability ratio (GSR) were measured. Femoral strength index (FSI) and bone mineral density (BMD) of the total body, lumbar spine, hip region and total lean tissue mass (TLTM) and total fat mass (TFM) were determined by dual-energy x-ray absorptiometry-DXA. PA was assessed during face-to-face interviews using the Baecke questionnaire. Demographic and health history information were obtained by structured telephone interview. In both sexes, a significant main effect for age-group was found for FF parameters, balance scores, gait performances, TLTM and hip, LS and total BMD and FSI. Likewise there were significant main effects for age-group for total PA in women and sports related PA in men. Men scored significantly better than women in FF (except in upper- and lower-body flexibility), balance, GV, SL, GSR and had higher BMD and TLTM compared with women. Active subjects scored better in FF, balance, and gait than their average and non-active peers. PA and FF exerted only a minor influence in the differentiation of BMD and FSI among the elderly while constitutive factors like age, height, body mass, TLTM and TFM entered as the most significant contributors. This study gives scientific support to public policies at the community level, targeted to increase PA, FF and TLTM, thereby contributing to improved quality of life in older adults.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The determination of the chemical composition of body and carcass is important in nutritional and growth regulation studies. The purpose of this study was to develop equations to predict the chemical composition of body and carcass using chemical composition of body components. Twenty 3/4Boer x 1/4Saanen crossbred male kids, weighing from 20 to 35 kg, were used in this study. The empty body chemical composition was measured by grinding all body components and sampling for chemical analyses. The body components used to estimate body and carcass composition were: neck, fore leg, ribs, loin, hind leg, 9-11 th rib section, non-carcass components (head plus feet, organs plus blood, and hide), visceral fat, and kidney fat. The chemical composition of organs plus blood and 9-11 th rib section had the highest precision to estimate percentage of fat, protein, and water in the body (r(2) of 0.94, 0.82, and 0.90, respectively). For carcass composition, the chemical composition of ribs was the best component to predict all carcass chemical components; however, the equations to estimate the percentages of protein and ash showed a low precision (r(2) = 0.48, 0.44, respectively). The 9-11 th rib section was accurate and precise to estimate carcass fat percentage. We concluded the chemical composition of the body of 3/4Boer x 1/4Saanen crossbred male kids was highly correlated with the composition of body parts, specifically organs plus blood and 9-11 th rib section. Further studies should focus on evaluating these body parts for different breeds and genders under different production scenarios. (C) 2007 Elsevier B.V. All rights reserved.