514 resultados para Formaldehyde.
Resumo:
A plant class III alcohol dehydrogenase (or glutathione-dependent formaldehyde dehydrogenase) has been characterized. The enzyme is a typical class III member with enzymatic parameters and substrate specificity closely related to those of already established animal forms. Km values with the pea enzyme are 6.5 microM for NAD+, 2 microM for S-hydroxymethylglutathione, and 840 microM for octanol versus 9, 4, and 1200 microM, respectively, with the human enzyme. Structurally, the pea/human class III enzymes are closely related, exhibiting a residue identity of 69% and with only 3 of 23 residues differing among those often considered in substrate and coenzyme binding. In contrast, the corresponding ethanol-active enzymes, the long-known human liver and pea alcohol dehydrogenases, differ more (47% residue identities) and are also in functionally important active site segments, with 12 of the 23 positions exchanged, including no less than 7 at the usually much conserved coenzyme-binding segment. These differences affect functionally important residues that are often class-distinguishing, such as those at positions 48, 51, and 115, where the plant ethanol-active forms resemble class III (Thr, Tyr, and Arg, respectively) rather than the animal ethanol-active class I forms (typically Ser, His, and Asp, respectively). Calculations of phylogenetic trees support the conclusions from functional residues in subgrouping plant ethanol-active dehydrogenases and the animal ethanol-active enzymes (class I) as separate descendants from the class III line. It appears that the classical plant alcohol dehydrogenases (now called class P) have a duplicatory origin separate from that of the animal class I enzymes and therefore a paralogous relationship with functional convergence of their alcohol substrate specificity. Combined, the results establish the conserved nature of class III also in plants, and contribute to the molecular and functional understanding of alcohol dehydrogenases by defining two branches of plant enzymes into the system.
Resumo:
Cover title.
Resumo:
Cover title.
Resumo:
The thesis is concerned with the development and testing of a mathematical model of a distillation process in which the components react chemically. The formaldehyde-methanol-water system was selected and only the reversible reactions between formaldehyde and water giving methylene glycol and between formaldehyde and methanol producing hemiformal were assumed to occur under the distillation conditions. Accordingly the system has been treated as a five component system. The vapour-liquid equilibrium calculations were performed by solving iteratively the thermodynamic relationships expressing the phase equilibria with the stoichiometric equations expressing the chemical equilibria. Using optimisation techniques, the Wilson single parameters and Henry's constants were calculated for binary systems containing formaldehyde which was assumed to be a supercritical component whilst Wilson binary parameters were calculated for the remaining binary systems. Thus the phase equilibria for the formaldehyde system could be calculated using these parameters and good accuracy was obtained when calculated values were compared with experimental values. The distillation process was modelled using the mass and energy balance equations together with the phase equilibria calculations. The plate efficiencies were obtained from a modified A.I.Ch.E. Bubble Tray method. The resulting equations were solved by an iterative plate to plate calculation based on the Newton Raphson method. Experiments were carried out in a 76mm I.D., eight sieve plate distillation column and the results were compared with the mathematical model calculations. Overall, good agreement was obtained but some discrepancies were observed in the concentration profiles and these may have been caused by the effect of limited physical property data and a limited understanding of the reactions mechanism. The model equations were solved in the form of modular computer programs. Although they were written to describe the steady state distillation with simultaneous chemical reaction of the formaldehyde system, the approach used may be of wider application.
Resumo:
The main objective of this work was to examlne the various stages of the production of industrial laminates based on phenol-formaldehyde resins, with a view of suggesting ways of improving the process economics and/or the physical properties of the final product. Aspects of impregnation, drying, and lamination were investigated. The resins used in all experiments were ammonia-catalysed. Work was concentrated on the lamination stage since this is a labour intensive activity. Paper-phenolic lay-ups were characterised in terms of the temperatures experienced during cure, and a shorter cure-cycle is proposed, utilising the exothermic heat produced during pressing of 25.5 mm thick lay-ups. Significant savings in production costs and improvements in some of the physical properties have been achieved. In particular, water absorption has been reduced by 43-61%. Work on the drying stage has shown that rapid heating of the wet impregnated substrate results in resin solids losses. Drying at lower temperatures by reducing the driving force leads to more resin (up to 6.5%) being retained by the prepregs and therefore more effective use of an expensive raw material. The impregnation work has indicated that residence times above 6 seconds in the varnish bath enhance the insulation resistance of the final product, possibly due to improved resin distribution and reduction in water absorption. In addition, a novel process which involves production of laminates by in situ polymerisation of the phenolic resin on the substrate has been examined. Such a process would eliminate the solvent recovery plant - a necessary stage in current industrial processes. In situ polymerisation has been shown to be chemically feasible.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Background/Aim: Formaldehyde is classified as carcinogenic to humans, making it a major concern, particularly in occupational settings. Fat-soluble vitamins, such as vitamins A, D, and E, are documented as antigenotoxic and antimutagenic and also correlate with the cell antioxidant potential. This study investigates the influence of these vitamins on genotoxicity biomarkers of formaldehyde-exposed hospital workers. Methods: The target population were hospital workers exposed to formaldehyde (n = 55). Controls were nonexposed individuals (n = 80). The most used genotoxicity biomarkers were the cytokinesis-block micronucleus assay for lymphocytes and the micronucleus test for exfoliated buccal cells. Vitamins A and E were determined by high-performance liquid chromatography with a diode array detector (HPLC-DAD) and vitamin D receptor (VDR) polymorphisms by real-time PCR. Results: Significant correlations were found between genotoxicity biomarkers and between vitamins A and E in controls. Multiple regression showed that vitamin A was significantly associated with a higher mean of nucleoplasmic bridges (p < 0.001), and vitamin E was significantly associated with a decreased frequency of nuclear buds (p = 0.045) in the exposed group. No effect of vitamin D was observed. The VDRBsmI TT genotype carriers presented higher means of all the genotoxicity biomarkers; however, we found no significant associations. Conclusions: The study suggests that vitamin levels may modulate direct signs of genotoxicity.
Resumo:
Personal exposure and possible cancer risk to formaldehyde and acetaldehyde were appraised in 8 work places at a university in Brazil. Levels of formaldehyde measured ranged from 22.5 to 161.5 g·m 3 and from 18.3 to 91.2 g·m 3 for acetaldehyde. The personal exposure, expressed as the potential dose in indoor air, was calculated to range from 129.8 to 930.4 g·day 1 (low exposure) and 183.9 to 1318.1 g·day 1 (medium exposure) for formaldehyde and 105.5 to 525.3 g·day 1 (low exposure) and 149.5 to 744.2 g·day 1 (medium exposure) for acetaldehyde. The indoor/outdoor ratio showed the existence of indoor sources of the compounds which were mainly in practical classes and research laboratories. The highest formaldehyde and acetaldehyde levels were found where chemical reagents were manipulated. Relating the levels found to the permissible limit given by the US OSHA showed there was no particular risk although some formaldehyde levels did exceed the lower exposure limit of the US agency NIOSH. Any cancer risk would be highest for female technicians and teaching researchers.
Resumo:
Introduction: Formaldehyde is a compound with a wide range and is commonly used in anatomy and pathology laboratories. At room temperature is quickly volatilized to a pungent and suffocating gas and its inhalation has been correlated to nuclear alterations in different tissues. We aimed to investigate whether exposure to this compound was correlated with the appearance of cytotoxic and genotoxic features in the nasal epithelial cells of students enrolled in a human anatomy course. Material and Methods: This prospective study collected periodically nasal cells from mucosa of 17 volunteers from two different undergraduate programs with different workloads of practical lessons in an anatomy laboratory, 30 and 90 hours per semester. Cells were staining according to Feulgen method and nuclear morphology was analyzed to detect possible damage. Dunn's post hoc test was used in the statistical analysis. Pearson's correlation was performed for gender, age and questionnaire responses. Results: Epithelial cells showed indicators of cytotoxicity and mutagenicity. Students with a more extensive workload in anatomy laboratory displayed a more severe profile with an increase in karyorrhexis (p < 0.05) over time. The micronucleus analysis showed difference between first and second collection (p < 0.01), although it was not maintained over the time. Students with a less extensive workload display no differences in most of cytological features. Despite karyorrhexis was present in a greater number of cells, for this group no significant difference was observed between any range. The same was observed to karyolysis and micronucleus (p > 0.05). Conclusion: Individuals exposed for short periods of time to formaldehyde are subject to the toxic action of this gas. Karyorrhexis was the most frequently observed cytotoxic feature and micronucleus showed an increase between the first time point. The patterns observed between the student's groups suggest a negative effect due to exposure time.
Resumo:
Few studies have been performed with parasites of marine and estuarine fish in southern Brazil. In the present study, unpublished results show the ways of parasitism of juvenile mullet by parasites. The toxicity of formaldehyde and the effectiveness of this chemotherapy in controlling parasites in reared juvenile mullet Mugil liza were also studied. Juvenile mullets (1 +/- 0.26 g; 4.1 +/- 0.4 cm) were exposed to different concentrations of 37% formaldehyde: control group and five formaldehyde concentrations which were tested: T1 (13.5), T2 (21.6), T3 (40.5), T4 (81) and T5 (135) mg L-1 with 8 fish per repetition in triplicate. To verify the drug effectiveness in parasitic control, juvenile mullets were exposed to 1 h prophylactic bath of 37% formaldehyde with a control group and five formaldehyde concentrations: T1 (67.5), T2 (135), T3 (270), T4 (405) and T5 (540) mg L-1, 8 fish per repetition in triplicate. Ligophorus cf. uruguayensis (Monogenoidea: Ancyrocephalidae) and Solostamenides cf. platyorchis (Monogenoidea: Microcotylidae) were identified in the gills. Digenea and Nematoda were observed in the intestines. This is the first occurrence of S. cf. platyorchis in Brazil. During the toxicity test, the LC50-96 h was estimated at 20.77 mg L-1 of formaldehyde. During the 1 h formaldehyde prophylactic bath, all parasites were eliminated in formaldehyde concentrations between 135 and 540 mg L-1. High survival rate was observed in all treatments. Values of prevalence and intensity of infestation observed in this study showed the potential damage caused by Monogenoidea to mullet. Formaldehyde baths with 135 mg L-1 are recommended to control Monogenoidea in mullet and the safe limits for formaldehyde use were presented. Besides, the endoparasites were tolerant to formaldehyde exposure. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The indoor air quality (IAQ) in buildings is currently assessed by measurement of pollutants during building operation for comparison with air quality standards. Current practice at the design stage tries to minimise potential indoor air quality impacts of new building materials and contents by selecting low-emission materials. However low-emission materials are not always available, and even when used the aggregated pollutant concentrations from such materials are generally overlooked. This paper presents an innovative tool for estimating indoor air pollutant concentrations at the design stage, based on emissions over time from large area building materials, furniture and office equipment. The estimator considers volatile organic compounds, formaldehyde and airborne particles from indoor materials and office equipment and the contribution of outdoor urban air pollutants affected by urban location and ventilation system filtration. The estimated pollutants are for a single, fully mixed and ventilated zone in an office building with acceptable levels derived from Australian and international health-based standards. The model acquires its dimensional data for the indoor spaces from a 3D CAD model via IFC files and the emission data from a building products/contents emissions database. This paper describes the underlying approach to estimating indoor air quality and discusses the benefits of such an approach for designers and the occupants of buildings.
Resumo:
Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.