940 resultados para Formal specification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PLCs (acronym for Programmable Logic Controllers) perform control operations, receiving information from the environment, processing it and modifying this same environment according to the results produced. They are commonly used in industry in several applications, from mass transport to petroleum industry. As the complexity of these applications increase, and as various are safety critical, a necessity for ensuring that they are reliable arouses. Testing and simulation are the de-facto methods used in the industry to do so, but they can leave flaws undiscovered. Formal methods can provide more confidence in an application s safety, once they permit their mathematical verification. We make use of the B Method, which has been successfully applied in the formal verification of industrial systems, is supported by several tools and can handle decomposition, refinement, and verification of correctness according to the specification. The method we developed and present in this work automatically generates B models from PLC programs and verify them in terms of safety constraints, manually derived from the system requirements. The scope of our method is the PLC programming languages presented in the IEC 61131-3 standard, although we are also able to verify programs not fully compliant with the standard. Our approach aims to ease the integration of formal methods in the industry through the abbreviation of the effort to perform formal verification in PLCs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los tipos de datos concurrentes son implementaciones concurrentes de las abstracciones de datos clásicas, con la diferencia de que han sido específicamente diseñados para aprovechar el gran paralelismo disponible en las modernas arquitecturas multiprocesador y multinúcleo. La correcta manipulación de los tipos de datos concurrentes resulta esencial para demostrar la completa corrección de los sistemas de software que los utilizan. Una de las mayores dificultades a la hora de diseñar y verificar tipos de datos concurrentes surge de la necesidad de tener que razonar acerca de un número arbitrario de procesos que invocan estos tipos de datos de manera concurrente. Esto requiere considerar sistemas parametrizados. En este trabajo estudiamos la verificación formal de propiedades temporales de sistemas concurrentes parametrizados, poniendo especial énfasis en programas que manipulan estructuras de datos concurrentes. La principal dificultad a la hora de razonar acerca de sistemas concurrentes parametrizados proviene de la interacción entre el gran nivel de concurrencia que éstos poseen y la necesidad de razonar al mismo tiempo acerca de la memoria dinámica. La verificación de sistemas parametrizados resulta en sí un problema desafiante debido a que requiere razonar acerca de estructuras de datos complejas que son accedidas y modificadas por un numero ilimitado de procesos que manipulan de manera simultánea el contenido de la memoria dinámica empleando métodos de sincronización poco estructurados. En este trabajo, presentamos un marco formal basado en métodos deductivos capaz de ocuparse de la verificación de propiedades de safety y liveness de sistemas concurrentes parametrizados que manejan estructuras de datos complejas. Nuestro marco formal incluye reglas de prueba y técnicas especialmente adaptadas para sistemas parametrizados, las cuales trabajan en colaboración con procedimientos de decisión especialmente diseñados para analizar complejas estructuras de datos concurrentes. Un aspecto novedoso de nuestro marco formal es que efectúa una clara diferenciación entre el análisis del flujo de control del programa y el análisis de los datos que se manejan. El flujo de control del programa se analiza utilizando reglas de prueba y técnicas de verificación deductivas especialmente diseñadas para lidiar con sistemas parametrizados. Comenzando a partir de un programa concurrente y la especificación de una propiedad temporal, nuestras técnicas deductivas son capaces de generar un conjunto finito de condiciones de verificación cuya validez implican la satisfacción de dicha especificación temporal por parte de cualquier sistema, sin importar el número de procesos que formen parte del sistema. Las condiciones de verificación generadas se corresponden con los datos manipulados. Estudiamos el diseño de procedimientos de decisión especializados capaces de lidiar con estas condiciones de verificación de manera completamente automática. Investigamos teorías decidibles capaces de describir propiedades de tipos de datos complejos que manipulan punteros, tales como implementaciones imperativas de pilas, colas, listas y skiplists. Para cada una de estas teorías presentamos un procedimiento de decisión y una implementación práctica construida sobre SMT solvers. Estos procedimientos de decisión son finalmente utilizados para verificar de manera automática las condiciones de verificación generadas por nuestras técnicas de verificación parametrizada. Para concluir, demostramos como utilizando nuestro marco formal es posible probar no solo propiedades de safety sino además de liveness en algunas versiones de protocolos de exclusión mutua y programas que manipulan estructuras de datos concurrentes. El enfoque que presentamos en este trabajo resulta ser muy general y puede ser aplicado para verificar un amplio rango de tipos de datos concurrentes similares. Abstract Concurrent data types are concurrent implementations of classical data abstractions, specifically designed to exploit the great deal of parallelism available in modern multiprocessor and multi-core architectures. The correct manipulation of concurrent data types is essential for the overall correctness of the software system built using them. A major difficulty in designing and verifying concurrent data types arises by the need to reason about any number of threads invoking the data type simultaneously, which requires considering parametrized systems. In this work we study the formal verification of temporal properties of parametrized concurrent systems, with a special focus on programs that manipulate concurrent data structures. The main difficulty to reason about concurrent parametrized systems comes from the combination of their inherently high concurrency and the manipulation of dynamic memory. This parametrized verification problem is very challenging, because it requires to reason about complex concurrent data structures being accessed and modified by threads which simultaneously manipulate the heap using unstructured synchronization methods. In this work, we present a formal framework based on deductive methods which is capable of dealing with the verification of safety and liveness properties of concurrent parametrized systems that manipulate complex data structures. Our framework includes special proof rules and techniques adapted for parametrized systems which work in collaboration with specialized decision procedures for complex data structures. A novel aspect of our framework is that it cleanly differentiates the analysis of the program control flow from the analysis of the data being manipulated. The program control flow is analyzed using deductive proof rules and verification techniques specifically designed for coping with parametrized systems. Starting from a concurrent program and a temporal specification, our techniques generate a finite collection of verification conditions whose validity entails the satisfaction of the temporal specification by any client system, in spite of the number of threads. The verification conditions correspond to the data manipulation. We study the design of specialized decision procedures to deal with these verification conditions fully automatically. We investigate decidable theories capable of describing rich properties of complex pointer based data types such as stacks, queues, lists and skiplists. For each of these theories we present a decision procedure, and its practical implementation on top of existing SMT solvers. These decision procedures are ultimately used for automatically verifying the verification conditions generated by our specialized parametrized verification techniques. Finally, we show how using our framework it is possible to prove not only safety but also liveness properties of concurrent versions of some mutual exclusion protocols and programs that manipulate concurrent data structures. The approach we present in this work is very general, and can be applied to verify a wide range of similar concurrent data types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En el futuro, la gestión del tráfico aéreo (ATM, del inglés air traffic management) requerirá un cambio de paradigma, de la gestión principalmente táctica de hoy, a las denominadas operaciones basadas en trayectoria. Un incremento en el nivel de automatización liberará al personal de ATM —controladores, tripulación, etc.— de muchas de las tareas que realizan hoy. Las personas seguirán siendo el elemento central en la gestión del tráfico aéreo del futuro, pero lo serán mediante la gestión y toma de decisiones. Se espera que estas dos mejoras traigan un incremento en la eficiencia de la gestión del tráfico aéreo que permita hacer frente al incremento previsto en la demanda de transporte aéreo. Para aplicar el concepto de operaciones basadas en trayectoria, el usuario del espacio aéreo (la aerolínea, piloto, u operador) y el proveedor del servicio de navegación aérea deben negociar las trayectorias mediante un proceso de toma de decisiones colaborativo. En esta negociación, es necesaria una forma adecuada de compartir dichas trayectorias. Compartir la trayectoria completa requeriría un gran ancho de banda, y la trayectoria compartida podría invalidarse si cambiase la predicción meteorológica. En su lugar, podría compartirse una descripción de la trayectoria independiente de las condiciones meteorológicas, de manera que la trayectoria real se pudiese calcular a partir de dicha descripción. Esta descripción de la trayectoria debería ser fácil de procesar usando un programa de ordenador —ya que parte del proceso de toma de decisiones estará automatizado—, pero también fácil de entender para un operador humano —que será el que supervise el proceso y tome las decisiones oportunas—. Esta tesis presenta una serie de lenguajes formales que pueden usarse para este propósito. Estos lenguajes proporcionan los medios para describir trayectorias de aviones durante todas las fases de vuelo, desde la maniobra de push-back (remolcado hasta la calle de rodaje), hasta la llegada a la terminal del aeropuerto de destino. También permiten describir trayectorias tanto de aeronaves tripuladas como no tripuladas, incluyendo aviones de ala fija y cuadricópteros. Algunos de estos lenguajes están estrechamente relacionados entre sí, y organizados en una jerarquía. Uno de los lenguajes fundamentales de esta jerarquía, llamado aircraft intent description language (AIDL), ya había sido desarrollado con anterioridad a esta tesis. Este lenguaje fue derivado de las ecuaciones del movimiento de los aviones de ala fija, y puede utilizarse para describir sin ambigüedad trayectorias de este tipo de aeronaves. Una variante de este lenguaje, denominada quadrotor AIDL (QR-AIDL), ha sido desarrollada en esta tesis para permitir describir trayectorias de cuadricópteros con el mismo nivel de detalle. Seguidamente, otro lenguaje, denominado intent composite description language (ICDL), se apoya en los dos lenguajes anteriores, ofreciendo más flexibilidad para describir algunas partes de la trayectoria y dejar otras sin especificar. El ICDL se usa para proporcionar descripciones genéricas de maniobras comunes, que después se particularizan y combinan para formar descripciones complejas de un vuelo. Otro lenguaje puede construirse a partir del ICDL, denominado flight intent description language (FIDL). El FIDL especifica requisitos de alto nivel sobre las trayectorias —incluyendo restricciones y objetivos—, pero puede utilizar características del ICDL para proporcionar niveles de detalle arbitrarios en las distintas partes de un vuelo. Tanto el ICDL como el FIDL han sido desarrollados en colaboración con Boeing Research & Technology Europe (BR&TE). También se ha desarrollado un lenguaje para definir misiones en las que interactúan varias aeronaves, el mission intent description language (MIDL). Este lenguaje se basa en el FIDL y mantiene todo su poder expresivo, a la vez que proporciona nuevas semánticas para describir tareas, restricciones y objetivos relacionados con la misión. En ATM, los movimientos de un avión en la superficie de aeropuerto también tienen que ser monitorizados y gestionados. Otro lenguaje formal ha sido diseñado con este propósito, llamado surface movement description language (SMDL). Este lenguaje no pertenece a la jerarquía de lenguajes descrita en el párrafo anterior, y se basa en las clearances (autorizaciones del controlador) utilizadas durante las operaciones en superficie de aeropuerto. También proporciona medios para expresar incertidumbre y posibilidad de cambios en las distintas partes de la trayectoria. Finalmente, esta tesis explora las aplicaciones de estos lenguajes a la predicción de trayectorias y a la planificación de misiones. El concepto de trajectory language processing engine (TLPE) se usa en ambas aplicaciones. Un TLPE es una función de ATM cuya principal entrada y salida se expresan en cualquiera de los lenguajes incluidos en la jerarquía descrita en esta tesis. El proceso de predicción de trayectorias puede definirse como una combinación de TLPEs, cada uno de los cuales realiza una pequeña sub-tarea. Se le ha dado especial importancia a uno de estos TLPEs, que se encarga de generar el perfil horizontal, vertical y de configuración de la trayectoria. En particular, esta tesis presenta un método novedoso para la generación del perfil vertical. El proceso de planificar una misión también se puede ver como un TLPE donde la entrada se expresa en MIDL y la salida consiste en cierto número de trayectorias —una por cada aeronave disponible— descritas utilizando FIDL. Se ha formulado este problema utilizando programación entera mixta. Además, dado que encontrar caminos óptimos entre distintos puntos es un problema fundamental en la planificación de misiones, también se propone un algoritmo de búsqueda de caminos. Este algoritmo permite calcular rápidamente caminos cuasi-óptimos que esquivan todos los obstáculos en un entorno urbano. Los diferentes lenguajes formales definidos en esta tesis pueden utilizarse como una especificación estándar para la difusión de información entre distintos actores de la gestión del tráfico aéreo. En conjunto, estos lenguajes permiten describir trayectorias con el nivel de detalle necesario en cada aplicación, y se pueden utilizar para aumentar el nivel de automatización explotando esta información utilizando sistemas de soporte a la toma de decisiones. La aplicación de estos lenguajes a algunas funciones básicas de estos sistemas, como la predicción de trayectorias, han sido analizadas. ABSTRACT Future air traffic management (ATM) will require a paradigm shift from today’s mainly tactical ATM to trajectory-based operations (TBOs). An increase in the level of automation will also relieve humans —air traffic control officers (ATCOs), flight crew, etc.— from many of the tasks they perform today. Humans will still be central in this future ATM, as decision-makers and managers. These two improvements (TBOs and increased automation) are expected to provide the increase in ATM performance that will allow coping with the expected increase in air transport demand. Under TBOs, trajectories are negotiated between the airspace user (an airline, pilot, or operator) and the air navigation service provider (ANSP) using a collaborative decision making (CDM) process. A suitable method for sharing aircraft trajectories is necessary for this negotiation. Sharing a whole trajectory would require a high amount of bandwidth, and the shared trajectory might become invalid if the weather forecast changed. Instead, a description of the trajectory, decoupled from the weather conditions, could be shared, so that the actual trajectory could be computed from this trajectory description. This trajectory description should be easy to process using a computing program —as some of the CDM processes will be automated— but also easy to understand for a human operator —who will be supervising the process and making decisions. This thesis presents a series of formal languages that can be used for this purpose. These languages provide the means to describe aircraft trajectories during all phases of flight, from push back to arrival at the gate. They can also describe trajectories of both manned and unmanned aircraft, including fixedwing and some rotary-wing aircraft (quadrotors). Some of these languages are tightly interrelated and organized in a language hierarchy. One of the key languages in this hierarchy, the aircraft intent description language (AIDL), had already been developed prior to this thesis. This language was derived from the equations of motion of fixed-wing aircraft, and can provide an unambiguous description of fixed-wing aircraft trajectories. A variant of this language, the quadrotor AIDL (QR-AIDL), is developed in this thesis to allow describing a quadrotor aircraft trajectory with the same level of detail. Then, the intent composite description language (ICDL) is built on top of these two languages, providing more flexibility to describe some parts of the trajectory while leaving others unspecified. The ICDL is used to provide generic descriptions of common aircraft manoeuvres, which can be particularized and combined to form complex descriptions of flight. Another language is built on top of the ICDL, the flight intent description language (FIDL). The FIDL specifies high-level requirements on trajectories —including constraints and objectives—, but can use features of the ICDL to provide arbitrary levels of detail in different parts of the flight. The ICDL and FIDL have been developed in collaboration with Boeing Research & Technology Europe (BR&TE). Also, the mission intent description language (MIDL) has been developed to allow describing missions involving multiple aircraft. This language is based on the FIDL and keeps all its expressive power, while it also provides new semantics for describing mission tasks, mission objectives, and constraints involving several aircraft. In ATM, the movement of aircraft while on the airport surface also has to be monitored and managed. Another formal language has been designed for this purpose, denoted surface movement description language (SMDL). This language does not belong to the language hierarchy described above, and it is based on the clearances used in airport surface operations. Means to express uncertainty and mutability of different parts of the trajectory are also provided. Finally, the applications of these languages to trajectory prediction and mission planning are explored in this thesis. The concept of trajectory language processing engine (TLPE) is used in these two applications. A TLPE is an ATM function whose main input and output are expressed in any of the languages in the hierarchy described in this thesis. A modular trajectory predictor is defined as a combination of multiple TLPEs, each of them performing a small subtask. Special attention is given to the TLPE that builds the horizontal, vertical, and configuration profiles of the trajectory. In particular, a novel method for the generation of the vertical profile is presented. The process of planning a mission can also be seen as a TLPE, where the main input is expressed in the MIDL and the output consists of a number of trajectory descriptions —one for each aircraft available in the mission— expressed in the FIDL. A mixed integer linear programming (MILP) formulation for the problem of assigning mission tasks to the available aircraft is provided. In addition, since finding optimal paths between locations is a key problem to mission planning, a novel path finding algorithm is presented. This algorithm can compute near-shortest paths avoiding all obstacles in an urban environment in very short times. The several formal languages described in this thesis can serve as a standard specification to share trajectory information among different actors in ATM. In combination, these languages can describe trajectories with the necessary level of detail for any application, and can be used to increase automation by exploiting this information using decision support tools (DSTs). Their applications to some basic functions of DSTs, such as trajectory prediction, have been analized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a formal framework for modelling and analysing mobile systems. The framework comprises a collection of models of the dominant design paradigms which are readily extended to incorporate details of particular technologies, i.e., programming languages and their run-time support, and applications. The modelling language is Object-Z, an extension of the well-known Z specification language with explicit support for object-oriented concepts. Its support for object orientation makes Object-Z particularly suited to our task. The system structuring techniques offered by object-orientation are well suited to modelling mobile systems. In addition, inheritance and polymorphism allow us to exploit commonalities in mobile systems by defining more complex models in terms of simpler ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Security protocols are often modelled at a high level of abstraction, potentially overlooking implementation-dependent vulnerabilities. Here we use the Z specification language's rich set of data structures to formally model potentially ambiguous messages that may be exploited in a 'type flaw' attack. We then show how to formally verify whether or not such an attack is actually possible in a particular protocol using Z's schema calculus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Well understood methods exist for developing programs from given specifications. A formal method identifies proof obligations at each development step: if all such proof obligations are discharged, a precisely defined class of errors can be excluded from the final program. For a class of closed systems such methods offer a gold standard against which less formal approaches can be measured. For open systems -those which interact with the physical world- the task of obtaining the program specification can be as challenging as the task of deriving the program. And, when a system of this class must tolerate certain kinds of unreliability in the physical world, it is still more challenging to reach confidence that the specification obtained is adequate. We argue that widening the notion of software development to include specifying the behaviour of the relevant parts of the physical world gives a way to derive the specification of a control system and also to record precisely the assumptions being made about the world outside the computer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An inherent incomputability in the specification of a functional language extension that combines assertions with dynamic type checking is isolated in an explicit derivation from mathematical specifications. The combination of types and assertions (into "dynamic assertion-types" - DATs) is a significant issue since, because the two are congruent means for program correctness, benefit arises from their better integration in contrast to the harm resulting from their unnecessary separation. However, projecting the "set membership" view of assertion-checking into dynamic types results in some incomputable combinations. Refinement of the specification of DAT checking into an implementation by rigorous application of mathematical identities becomes feasible through the addition of a "best-approximate" pseudo-equality that isolates the incomputable component of the specification. This formal treatment leads to an improved, more maintainable outcome with further development potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hard real-time systems are a class of computer control systems that must react to demands of their environment by providing `correct' and timely responses. Since these systems are increasingly being used in systems with safety implications, it is crucial that they are designed and developed to operate in a correct manner. This thesis is concerned with developing formal techniques that allow the specification, verification and design of hard real-time systems. Formal techniques for hard real-time systems must be capable of capturing the system's functional and performance requirements, and previous work has proposed a number of techniques which range from the mathematically intensive to those with some mathematical content. This thesis develops formal techniques that contain both an informal and a formal component because it is considered that the informality provides ease of understanding and the formality allows precise specification and verification. Specifically, the combination of Petri nets and temporal logic is considered for the specification and verification of hard real-time systems. Approaches that combine Petri nets and temporal logic by allowing a consistent translation between each formalism are examined. Previously, such techniques have been applied to the formal analysis of concurrent systems. This thesis adapts these techniques for use in the modelling, design and formal analysis of hard real-time systems. The techniques are applied to the problem of specifying a controller for a high-speed manufacturing system. It is shown that they can be used to prove liveness and safety properties, including qualitative aspects of system performance. The problem of verifying quantitative real-time properties is addressed by developing a further technique which combines the formalisms of timed Petri nets and real-time temporal logic. A unifying feature of these techniques is the common temporal description of the Petri net. A common problem with Petri net based techniques is the complexity problems associated with generating the reachability graph. This thesis addresses this problem by using concurrency sets to generate a partial reachability graph pertaining to a particular state. These sets also allows each state to be checked for the presence of inconsistencies and hazards. The problem of designing a controller for the high-speed manufacturing system is also considered. The approach adopted mvolves the use of a model-based controller: This type of controller uses the Petri net models developed, thus preservIng the properties already proven of the controller. It. also contains a model of the physical system which is synchronised to the real application to provide timely responses. The various way of forming the synchronization between these processes is considered and the resulting nets are analysed using concurrency sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increasing emphasis on the use of software to control safety critical plants for a wide area of applications. The importance of ensuring the correct operation of such potentially hazardous systems points to an emphasis on the verification of the system relative to a suitably secure specification. However, the process of verification is often made more complex by the concurrency and real-time considerations which are inherent in many applications. A response to this is the use of formal methods for the specification and verification of safety critical control systems. These provide a mathematical representation of a system which permits reasoning about its properties. This thesis investigates the use of the formal method Communicating Sequential Processes (CSP) for the verification of a safety critical control application. CSP is a discrete event based process algebra which has a compositional axiomatic semantics that supports verification by formal proof. The application is an industrial case study which concerns the concurrent control of a real-time high speed mechanism. It is seen from the case study that the axiomatic verification method employed is complex. It requires the user to have a relatively comprehensive understanding of the nature of the proof system and the application. By making a series of observations the thesis notes that CSP possesses the scope to support a more procedural approach to verification in the form of testing. This thesis investigates the technique of testing and proposes the method of Ideal Test Sets. By exploiting the underlying structure of the CSP semantic model it is shown that for certain processes and specifications the obligation of verification can be reduced to that of testing the specification over a finite subset of the behaviours of the process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ensuring the correctness of software has been the major motivation in software research, constituting a Grand Challenge. Due to its impact in the final implementation, one critical aspect of software is its architectural design. By guaranteeing a correct architectural design, major and costly flaws can be caught early on in the development cycle. Software architecture design has received a lot of attention in the past years, with several methods, techniques and tools developed. However, there is still more to be done, such as providing adequate formal analysis of software architectures. On these regards, a framework to ensure system dependability from design to implementation has been developed at FIU (Florida International University). This framework is based on SAM (Software Architecture Model), an ADL (Architecture Description Language), that allows hierarchical compositions of components and connectors, defines an architectural modeling language for the behavior of components and connectors, and provides a specification language for the behavioral properties. The behavioral model of a SAM model is expressed in the form of Petri nets and the properties in first order linear temporal logic.^ This dissertation presents a formal verification and testing approach to guarantee the correctness of Software Architectures. The Software Architectures studied are expressed in SAM. For the formal verification approach, the technique applied was model checking and the model checker of choice was Spin. As part of the approach, a SAM model is formally translated to a model in the input language of Spin and verified for its correctness with respect to temporal properties. In terms of testing, a testing approach for SAM architectures was defined which includes the evaluation of test cases based on Petri net testing theory to be used in the testing process at the design level. Additionally, the information at the design level is used to derive test cases for the implementation level. Finally, a modeling and analysis tool (SAM tool) was implemented to help support the design and analysis of SAM models. The results show the applicability of the approach to testing and verification of SAM models with the aid of the SAM tool.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Petri Nets are a formal, graphical and executable modeling technique for the specification and analysis of concurrent and distributed systems and have been widely applied in computer science and many other engineering disciplines. Low level Petri nets are simple and useful for modeling control flows but not powerful enough to define data and system functionality. High level Petri nets (HLPNs) have been developed to support data and functionality definitions, such as using complex structured data as tokens and algebraic expressions as transition formulas. Compared to low level Petri nets, HLPNs result in compact system models that are easier to be understood. Therefore, HLPNs are more useful in modeling complex systems. ^ There are two issues in using HLPNs—modeling and analysis. Modeling concerns the abstracting and representing the systems under consideration using HLPNs, and analysis deals with effective ways study the behaviors and properties of the resulting HLPN models. In this dissertation, several modeling and analysis techniques for HLPNs are studied, which are integrated into a framework that is supported by a tool. ^ For modeling, this framework integrates two formal languages: a type of HLPNs called Predicate Transition Net (PrT Net) is used to model a system's behavior and a first-order linear time temporal logic (FOLTL) to specify the system's properties. The main contribution of this dissertation with regard to modeling is to develop a software tool to support the formal modeling capabilities in this framework. ^ For analysis, this framework combines three complementary techniques, simulation, explicit state model checking and bounded model checking (BMC). Simulation is a straightforward and speedy method, but only covers some execution paths in a HLPN model. Explicit state model checking covers all the execution paths but suffers from the state explosion problem. BMC is a tradeoff as it provides a certain level of coverage while more efficient than explicit state model checking. The main contribution of this dissertation with regard to analysis is adapting BMC to analyze HLPN models and integrating the three complementary analysis techniques in a software tool to support the formal analysis capabilities in this framework. ^ The SAMTools developed for this framework in this dissertation integrates three tools: PIPE+ for HLPNs behavioral modeling and simulation, SAMAT for hierarchical structural modeling and property specification, and PIPE+Verifier for behavioral verification.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ensuring the correctness of software has been the major motivation in software research, constituting a Grand Challenge. Due to its impact in the final implementation, one critical aspect of software is its architectural design. By guaranteeing a correct architectural design, major and costly flaws can be caught early on in the development cycle. Software architecture design has received a lot of attention in the past years, with several methods, techniques and tools developed. However, there is still more to be done, such as providing adequate formal analysis of software architectures. On these regards, a framework to ensure system dependability from design to implementation has been developed at FIU (Florida International University). This framework is based on SAM (Software Architecture Model), an ADL (Architecture Description Language), that allows hierarchical compositions of components and connectors, defines an architectural modeling language for the behavior of components and connectors, and provides a specification language for the behavioral properties. The behavioral model of a SAM model is expressed in the form of Petri nets and the properties in first order linear temporal logic. This dissertation presents a formal verification and testing approach to guarantee the correctness of Software Architectures. The Software Architectures studied are expressed in SAM. For the formal verification approach, the technique applied was model checking and the model checker of choice was Spin. As part of the approach, a SAM model is formally translated to a model in the input language of Spin and verified for its correctness with respect to temporal properties. In terms of testing, a testing approach for SAM architectures was defined which includes the evaluation of test cases based on Petri net testing theory to be used in the testing process at the design level. Additionally, the information at the design level is used to derive test cases for the implementation level. Finally, a modeling and analysis tool (SAM tool) was implemented to help support the design and analysis of SAM models. The results show the applicability of the approach to testing and verification of SAM models with the aid of the SAM tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Petri Nets are a formal, graphical and executable modeling technique for the specification and analysis of concurrent and distributed systems and have been widely applied in computer science and many other engineering disciplines. Low level Petri nets are simple and useful for modeling control flows but not powerful enough to define data and system functionality. High level Petri nets (HLPNs) have been developed to support data and functionality definitions, such as using complex structured data as tokens and algebraic expressions as transition formulas. Compared to low level Petri nets, HLPNs result in compact system models that are easier to be understood. Therefore, HLPNs are more useful in modeling complex systems. There are two issues in using HLPNs - modeling and analysis. Modeling concerns the abstracting and representing the systems under consideration using HLPNs, and analysis deals with effective ways study the behaviors and properties of the resulting HLPN models. In this dissertation, several modeling and analysis techniques for HLPNs are studied, which are integrated into a framework that is supported by a tool. For modeling, this framework integrates two formal languages: a type of HLPNs called Predicate Transition Net (PrT Net) is used to model a system's behavior and a first-order linear time temporal logic (FOLTL) to specify the system's properties. The main contribution of this dissertation with regard to modeling is to develop a software tool to support the formal modeling capabilities in this framework. For analysis, this framework combines three complementary techniques, simulation, explicit state model checking and bounded model checking (BMC). Simulation is a straightforward and speedy method, but only covers some execution paths in a HLPN model. Explicit state model checking covers all the execution paths but suffers from the state explosion problem. BMC is a tradeoff as it provides a certain level of coverage while more efficient than explicit state model checking. The main contribution of this dissertation with regard to analysis is adapting BMC to analyze HLPN models and integrating the three complementary analysis techniques in a software tool to support the formal analysis capabilities in this framework. The SAMTools developed for this framework in this dissertation integrates three tools: PIPE+ for HLPNs behavioral modeling and simulation, SAMAT for hierarchical structural modeling and property specification, and PIPE+Verifier for behavioral verification.