978 resultados para Forest Structure


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Se ajustaron y evaluaron funciones de volumen de fuste para un grupo de especies arbóreas de un bosque secundario. El bosque del cual se obtuvieron los datos se encuentra situado en la Reserva de Biosfera Yabotí, en la provincia de Misiones, Argentina. Se trabajó sobre una muestra de 216 árboles, correspondientes a las 14 especies presentes más importantes respecto de la estructura del bosque y/o del valor económico de las mismas. De las nueve funciones evaluadas, cinco de ellas tuvieron coeficientes de determinación ajustados superiores a 0,99. Por su destacado comportamiento estadístico global se seleccionó una expresión resultante de modificar el modelo de Naslund. Utilizando los resultados de esta función se construyó una tabla de volumen de fustes individuales en la cual el diámetro a 1,3 m de altura (D) y la altura de fuste (H) fueron las variables de entrada para árboles de un bosque secundario de aproximadamente 30 años de edad. Los D observados fueron desde 5,4 hasta 42 cm y el rango de H entre 1,4 y 16 m. Los modelos seleccionados dieron resultados satisfactorios para predecir volúmenes y cantidad de biomasa acumulada en los fustes de árboles del bosque secundario analizado en este trabajo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of conversion treatments, depending on ecological factors and silvicultural parameters (thinning intensity, thinning type and rotation, among others) have been studied during the last fifteen years in an experimental trial in Central Spain. The general climate is continental Mediterranean; soils are low depth and limy; vegetation is an homogeneous dense coppices of Quercus ilex with isolated Pinus nigra trees. The experimental design (three locations) includes different thinning intensities (from 0 to 100% of extracted basal area). Inventories have been carried out in 1994 and 2010; thinning treatments were done in 1995 and 2011. Analysis of the effects of the conversion treatment show the increment of diameter and height growth rates, the canopy recovery and the stand resprouting, finding differences in these effects between thinning treatments. Besides the induced changes at holm oak stand, the application of conversion treatment clearly changed the woodland dynamics. Fifteen years after the thinnings, floristic composition varied and an abundant pine regeneration was installed in the woodland. In this work we describe the changes between inventories in tree species composition and diameter distribution, specially in the case of black pine. The conversion treatment caused changes in forest dynamics in the short term, increasing biodiversity and diversifying the forest structure. The fast installation of Pinus regeneration suggests the potential of the zone for the establishment of multipurpose mixed Quercus-Pinus stands in wide areas where Quercus species were favoured by human populations for firewood production. Conversion treatment of coppices, with the creation of mixed stands, constitutes a good management alternative for extensive areas and an interesting technique to adaptation to global change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La Gestión Forestal Sustentable es la principal herramienta para garantizar la compatibilidad entre producción y conservación en todos los bosques, y mas especialmente en los que exhiben niveles máximos de diversidad, como los tropicales humedos. En ellos existe un gran desconocimiento sobre la gestión de los recursos maderables de pequeña dimensión y los no maderables (PFNM) con mercado local. La madera redonda de pequeño diámetro es un recurso forestal de bajo valor económico extraído tradicionalmente por los pobladores locales de las zonas tropicales húmedas para construir sus viviendas. Los fustes de mejor calidad se obtienen del bosque de varillal, o bosques sobre arena blanca, altamente oligotroficos, sin potencial agrícola, escasos, dispersos, de pequeña superficie, gran fragilidad y alto porcentaje de endemismos. En el entorno de los centros urbanos de la Amazonia peruana, esta madera supone uno de los principales ingresos económicos para la población local, al ser extraida para su comercialización en dichos centros urbanos. Esto supone un riesgo de sobre-explotacion cuyos efectos se desconocen hasta el momento. Para acercarnos la situacion ambiental, social y económica asociada al varillal, se han realizado inventarios botanicos y de estructura forestal, se ha descrito el sistema de aprovechamiento tradicional y cuantificado sus efectos y, finalmente, se han realizado encuestas orientadas a analizar la situación social y economica de las comunidades locales que extraen y comercializan sus productos. El aprovechamiento tradicional del varillal es una actividad de bajo impacto que no emplea maquinaria y se centra en la extracción de fustes con diámetro normal entre 5 y 15 cm y características especificas de longitud, forma de fuste y calidad de la especie. Los resultados ponen de manifiesto la relevancia de la distancia existente entre el punto de extracción y el punto de venta, asi como la gran influencia que tiene la situación social y económica en la gestión sustentable del varillal. Todo ello pone en evidencia que si existe un cierto efecto negativo de la extracción intensa y continuada que han sufrido los varíllales mas próximos al centro urbano. Para favorecer una Gestión Forestal Sustentable que reduzca este efecto negativo es esencial llevar a cabo una adecuada planificación comunal que permita establecer una secuencia ordenada de zonas de corta y un cronograma para su gestión y aprovechamiento que evite la extracción repetida en un mismo varillal. ABSTRACT Sustainable forest management is the main tool to ensure compatibility between production and conservation in all forests, and especially in those exhibiting the maximum levels of diversity, such as tropical rain. Within them there is a great ignorance about the management of small sized timber and non-timber resources (PFMN) in the local market. The small-diameter round timber is a forest resource of low economic value extracted traditionally by local people of the humid tropics to build their homes. The better quality shafts are obtained from varillal forest or forests on white sand, highly oligotrophic, no agricultural potential, few, scattered, small size, fragility and high percentage of endemic species. In the environment of the urban centres of the Peruvian Amazon, this wood is one of the main incomes for the local population, since it is extracted for marketing in these urban centres. This poses a risk of overexploitation whose effects are unknown so far. To approach the environmental, social and economic situation associated to the varillal, botanical and forest structure inventories have been conducted, traditional harvesting systems described and their effects quantified and targeted surveys have eventually been conducted to analyse the social and local economic situation of the communities that extract and sell the products. The traditional use of varillal is a low-impact activity that does not use machinery and focuses on the extraction of shafts with a normal diameter of between 5 and 15 cm and specific characteristics in length, stem form and quality of the species. The results highlight the importance of the distance from the extraction point and the sale point, and the great influence of the social and economic situation in the sustainable management of varillal. This demonstrates that there is indeed a negative effect caused by the intense and continuous extraction that varillales closest to the city centre have suffered. To encourage a Sustainable Forest Management to reduce this negative effect is essential to conduct proper community planning in order to establish an ordered sequence of areas and a chronogram for their management and use, to avoid a repeat extraction in the same varillal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We extend in this paper some previous results concerning the differential-algebraic index of hybrid models of electrical and electronic circuits. Specifically, we present a comprehensive index characterization which holds without passivity requirements, in contrast to previous approaches, and which applies to nonlinear circuits composed of uncoupled, one-port devices. The index conditions, which are stated in terms of the forest structure of certain digraph minors, do not depend on the specific tree chosen in the formulation of the hybrid equations. Additionally, we show how to include memristors in hybrid circuit models; in this direction, we extend the index analysis to circuits including active memristors, which have been recently used in the design of nonlinear oscillators and chaotic circuits. We also discuss the extension of these results to circuits with controlled sources, making our framework of interest in the analysis of circuits with transistors, amplifiers, and other multiterminal devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated how species identity and variation in salinity and nutrient availability influence the hydraulic conductivity of mangroves. Using a fertilization study of two species in Florida, we found that stem hydraulic conductivity expressed on a leaf area basis (K-leaf) was significantly different among species of differing salinity tolerance, but was not significantly altered by enrichment with limiting nutrients. Reviewing data from two additional sites (Panama and Belize), we found an overall pattern of declining leaf-specific hydraulic conductivity (K-leaf) with increasing salinity. Over three sites, a general pattern emerges, indicating that native stem hydraulic conductivity (K-h) and K-leaf are less sensitive to nitrogen (N) fertilization when N limits growth, but more sensitive to phosphorus (P) fertilization when P limits growth. Processes leading to growth enhancement with N fertilization are probably associated with changes in allocation to leaf area and photosynthetic processes, whereas water uptake and transport processes could be more limiting when P limits growth. These findings suggest that whereas salinity and species identity place broad bounds on hydraulic conductivity, the effects of nutrient availability modulate hydraulic conductivity and growth in complex ways.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Good estimates of ecosystem complexity are essential for a number of ecological tasks: from biodiversity estimation, to forest structure variable retrieval, to feature extraction by edge detection and generation of multifractal surface as neutral models for e.g. feature change assessment. Hence, measuring ecological complexity over space becomes crucial in macroecology and geography. Many geospatial tools have been advocated in spatial ecology to estimate ecosystem complexity and its changes over space and time. Among these tools, free and open source options especially offer opportunities to guarantee the robustness of algorithms and reproducibility. In this paper we will summarize the most straightforward measures of spatial complexity available in the Free and Open Source Software GRASS GIS, relating them to key ecological patterns and processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Two species of mangrove trees of Indo- Pacific origin have naturalized in tropical Atlantic mangrove forests in South Florida after they were planted and nurtured in botanic gardens. Two Bruguiera gymnorrhiza trees that were planted in the intertidal zone in 1940 have given rise to a population of at least 86 trees growing interspersed with native mangrove species Rhizophora mangle, Avicennia germinans and Laguncularia racemosa along 100 m of shoreline; the population is expanding at a rate of 5.6% year-1. Molecular genetic analyses confirm very low genetic diversity, as expected from a population founded by two individuals. The maximumnumber of alleles at any locus was three, and we measured reduced heterozygosity compared to native-range populations. Lumnitzera racemosa was introduced multiple times during the 1960s and 1970s, it has spread rapidly into a forest composed of native R. mangle, A. germinans, Laguncularia racemosa and Conocarpus erectus and now occupies 60,500 m2 of mangrove forest with stem densities of 24,735 ha-1. We estimate the population growth rate of Lumnitzera racemosa to be between 17 and 23% year-1. Populations of both species of naturalized mangroves are dominated by young individuals. Given the long life and water-dispersed nature of propagules of the two exotic species, it is likely that they have spread beyond our survey area. We argue that the species-depauperate nature of tropical Atlantic mangrove forests and close taxonomic relatives in the more species-rich Indo-Pacific region result in the susceptibility of tropical Atlantic mangrove forests to invasion by Indo-Pacific mangrove species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two species of mangrove trees of Indo- Pacific origin have naturalized in tropical Atlantic mangrove forests in South Florida after they were planted and nurtured in botanic gardens. Two Bruguiera gymnorrhiza trees that were planted in the intertidal zone in 1940 have given rise to a population of at least 86 trees growing interspersed with native mangrove species Rhizophora mangle, Avicennia germinans and Laguncularia racemosa along 100 m of shoreline; the population is expanding at a rate of 5.6% year-1. Molecular genetic analyses confirm very low genetic diversity, as expected from a population founded by two individuals. The maximumnumber of alleles at any locus was three, and we measured reduced heterozygosity compared to native-range populations. Lumnitzera racemosa was introduced multiple times during the 1960s and 1970s, it has spread rapidly into a forest composed of native R. mangle, A. germinans, Laguncularia racemosa and Conocarpus erectus and now occupies 60,500 m2 of mangrove forest with stem densities of 24,735 ha-1. We estimate the population growth rate of Lumnitzera racemosa to be between 17 and 23% year-1. Populations of both species of naturalized mangroves are dominated by young individuals. Given the long life and water-dispersed nature of propagules of the two exotic species, it is likely that they have spread beyond our survey area. We argue that the species-depauperate nature of tropical Atlantic mangrove forests and close taxonomic relatives in the more species-rich Indo-Pacific region result in the susceptibility of tropical Atlantic mangrove forests to invasion by Indo-Pacific mangrove species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemical defenses are common among organisms and represent some of the most complex adaptations for avoiding predation, yet our understanding of the ecological nature of these systems remains incomplete. Poison frogs are a group of chemically defended organisms that are dependent entirely on diet for chemical defense. In this study, I identified the dietary arthropods responsible for chemical defense in poison frogs, described spatial and temporal patterns in alkaloid composition of poison frogs, and established links between patterns of variation in alkaloid defense and arthropod diet in poison frogs. Identifying dietary sources and studying patterns of variation in alkaloid composition is fundamental to understanding the ecology and evolution of chemical defense in poison frogs. ^ The dendrobatid poison frog Oophaga pumilio shares many alkaloids in common with other poison frogs and is known to vary in alkaloid composition throughout its geographic range. I designed my dissertation to take advantage of these characteristics and use O. pumilio as a model species for the study of chemical defense in poison frogs. Here, I identified siphonotid millipedes as a source for spiropyrrolizidine alkaloids, formicine ants as a source for pumiliotoxin alkaloids, and oribatid mites as dietary sources for the majority of alkaloids found in poison frogs. I found that alkaloid composition varied spatially and temporally, on both small and large scales, within and among populations of O. pumilio. Alkaloid variation between populations was related to geographic distance, and closer populations tended to have alkaloid compositions more similar to each other than to distant populations. ^ The findings of my study suggest that oribatid mites are the most important dietary source of alkaloids in poison frogs. However, overall alkaloid defense in poison frogs is based on a combination of dietary arthropods, including mites, ants, millipedes, and beetles. Variation in chemical defenses of poison frogs is due to (1) spatial and temporal differences in the presence of alkaloids in certain arthropods and (2) differences in the availability of certain alkaloid-containing arthropods, which are likely the result of differences as well as successional changes in forest structure among locations and through time. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The distribution of mangrove biomass and forest structure along Shark River estuary in the Florida Coastal Everglades (FCE) has been correlated with elevated total phosphorus concentration in soils thought to be associated with storm events. The passage of Hurricane Wilma across Shark River estuary in 2005 allowed us to quantify sediment deposition and nutrient inputs in FCE mangrove forests associated with this storm event and to evaluate whether these pulsing events are sufficient to regulate nutrient biogeochemistry in mangrove forests of south Florida. We sampled the spatial pattern of sediment deposits and their chemical properties in mangrove forests along FCE sites in December 2005 and October 2006. The thickness (0.5 to 4.5 cm) of hurricane sediment deposits decreased with distance inland at each site. Bulk density, organic matter content, total nitrogen (N) and phosphorus (P) concentrations, and inorganic and organic P pools of hurricane sediment deposits differed from surface (0–10 cm) mangrove soils at each site. Vertical accretion resulting from this hurricane event was eight to 17 times greater than the annual accretion rate (0.30± 0.03 cm year−1) averaged over the last 50 years. Total P inputs from storm-derived sediments were equivalent to twice the average surface soil nutrient P density (0.19 mg cm−3). In contrast, total N inputs contributed 0.8 times the average soil nutrient N density (2.8 mg cm−3). Allochthonous mineral inputs from Hurricane Wilma represent a significant source of sediment to soil vertical accretion rates and nutrient resources in mangroves of southwestern Everglades. The gradient in total P deposition to mangrove soils from west to east direction across the FCE associated with this storm event is particularly significant to forest development due to the P-limited condition of this carbonate ecosystem. This source of P may be an important adaptation of mangrove forests in the Caribbean region to projected impacts of sea-level rise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Freeze events significantly influence landscape structure and community composition along subtropical coastlines. This is particularly true in south Florida, where such disturbances have historically contributed to patch diversity within the mangrove forest, and have played a part in limiting its inland transgression. With projected increases in mean global temperatures, such instances are likely to become much less frequent in the region, contributing to a reduction in heterogeneity within the mangrove forest itself. To understand the process more clearly, we explored the dynamics of a Dwarf mangrove forest following two chilling events that produced freeze-like symptoms, i.e., leaf browning, desiccation, and mortality, and interpreted the resulting changes within the context of current winter temperatures and projected future scenarios. Structural effects from a 1996 chilling event were dramatic, with mortality and tissue damage concentrated among individuals comprising the Dwarf forest's low canopy. This disturbance promoted understory plant development and provided an opportunity for Laguncularia racemosa to share dominance with Rhizophora mangle. Mortality due to the less severe 2001 event was greatest in the understory, probably because recovery of the protective canopy following the earlier freeze was still incomplete. Stand dynamics were static over the same period in nearby unimpacted sites. The probability of reaching temperatures as low as those recorded at a nearby meteorological station (≤3 °C) under several warming scenarios was simulated by applying 1° incremental temperature increases to a model developed from a 42-year temperature record. According to the model, the frequency of similar chilling events decreased from once every 1.9 years at present to once every 3.4 and 32.5 years with 1 and 4 °C warming, respectively. The large decrease in the frequency of these events would eliminate an important mechanism that maintains Dwarf forest structure, and promotes compositional diversity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year-round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration-to-recharge rates were elevated, while low evapotranspiration-to-recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tree island ecosystems are important and distinct features of Florida Everglades wetlands. We described the inter-relationships among abiotic factors describing seasonally flooded tree islands and characterized plant–soil relationships in tree islands occurring in a relatively unimpacted area of the Everglades. We used Principal Components Analysis (PCA) to reduce our multi-factor dataset, quantified forest structure and vegetation nutrient dynamics, and related these vegetation parameters to PCA summary variables using linear regression analyses. We found that, of the 21 abiotic parameters used to characterize the ecosystem structure of seasonally flooded tree islands, 13 parameters were significantly correlated with four principal components, and they described 78% of the variance among the study islands. Most variation was described by factors related to soil oxidation and hydrology, exemplifying the sensitivity of tree island structure to hydrologic conditions. PCA summary variables describing tree island structure were related to variability in Chrysobalanus icaco (L.) canopy cover, Ilex cassine (L.) and Salix caroliniana (Michx.) canopy cover, Myrica cerifera (L.) plot frequency, litter turnover, % phosphorus resorption of co-dominant species, and nitrogen nutrient-use efficiency. This study supported findings that vegetation characteristics can be sensitive indicators of variability in tree island ecosystem structure. This study produced valuable, information which was used to recommend ecological targets (i.e. restoration performance measures) for seasonally flooded tree islands in more impacted regions of the Everglades landscape.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year-round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration-to-recharge rates were elevated, while low evapotranspiration-to-recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands.