950 resultados para Forest Cover Zones
Resumo:
Little is known about the traditional coffee cultivation systems in Central Aceh, Indonesia, where coffee production is a major source of income for local Gayo people. Based on field observations and farmer interviews, 14 representative agroforestry coffee plantations of different age classes (60-70 years, 30-40 years, and 20 years) as well as seven adjacent grassland and native forest sites were selected for this study, and soil and coffee leaf samples collected for nutrient analysis. Significant differences in soil and coffee leaf parameters were found between former native forest and Sumatran pine (Pinus merkusii) forest as previous land cover indicating the importance of the land use history for today’s coffee cultivation. Soil pH as well as exchangeable Na and Ca concentrations were significantly lower on coffee plantations compared to grassland and forest sites. Soil C, N, plant available P, exchangeable K, and Mg concentrations showed no consistent differences between land use groups. Nitrogen (N), phosphorus (P), and potassium (K) concentrations of coffee leaves were in the sufficiency range, whereas zinc (Zn) contents were found to be consistently below the sufficiency threshold and significantly lower in coffee plantations of previous pine forest cover compared to those of previous native forest cover. While the results of this study provided insights into the nutrient status of coffee plantations in Central Aceh, the heterogeneity of site conditions, limited sampling size, and scarcity of reliable data about the land use history and initial soil conditions of sampled sites preclude more definitive conclusions about the sustainability of the studied systems.
Resumo:
Despite a growing body of literature on how environmental degradation can fuel civil war, the reverse effect, namely that of conflict on environmental outcomes, is relatively understudied. From a theoretical point of view this effect is ambiguous, with some forces pointing to pressures for environmental degradation and some pointing in the opposite direction. Hence, the overall effect of conflict on the environment is an empirical question. We study this relationship in the case of Colombia. We combine a detailed satellite-based longitudinal dataset on forest cover across municipalities over the period 1990-2010 with a comprehensive panel of conflict-related violent actions by paramilitary militias. We first provide evidence that paramilitary activity significantly reduces the share of forest cover in a panel specification that includes municipal and time fixed effects. Then we confirm these findings by taking advantage of a quasi-experiment that provides us with an exogenous source of variation for the expansion of the paramilitary. Using the distance to the region of Urab´a, the epicenter of such expansion, we instrument paramilitary activity in each cross-section for which data on forest cover is available. As a falsification exercise, we show that the instrument ceases to be relevant after the paramilitaries largely demobilized following peace negotiations with the government. Further, after the demobilization the deforestation effect of the paramilitaries disappears. We explore a number of potential mechanisms that may explain the conflict-driven deforestation, and show evidence suggesting that paramilitary violence generates large outflows of people in order to secure areas for growing illegal crops, exploit mineral resources, and engage in extensive agriculture. In turn, these activities are associated with deforestation.
Resumo:
The Marbled Murrelet (Brachyramphus marmoratus) is a threatened alcid that nests almost exclusively in old-growth forests along the Pacific coast of North America. Nesting habitat has significant economic importance. Murrelet nests are extremely difficult and costly to find, which adds uncertainty to management and conservation planning. Models based on air photo interpretation of forest cover maps or assessments by low-level helicopter flights are currently used to rank presumed Marbled Murrelet nesting habitat quality in British Columbia. These rankings are assumed to correlate with nest usage and murrelet breeding productivity. Our goal was to find the models that best predict Marbled Murrelet nesting habitat in the ground-accessible portion of the two regions studied. We generated Resource Selection Functions (RSF) using logistic regression models of ground-based forest stand variables gathered at plots around 64 nests, located using radio-telemetry, versus 82 random habitat plots. The RSF scores are proportional to the probability of nests occurring in a forest patch. The best models differed somewhat between the two regions, but include both ground variables at the patch scale (0.2-2.0 ha), such as platform tree density, height and trunk diameter of canopy trees and canopy complexity, and landscape scale variables such as elevation, aspect, and slope. Collecting ground-based habitat selection data would not be cost-effective for widespread use in forestry management; air photo interpretation and low-level aerial surveys are much more efficient methods for ranking habitat suitability on a landscape scale. This study provides one method for ground-truthing the remote methods, an essential step made possible using the numerical RSF scores generated herein.
Resumo:
The Golden-winged Warbler (Vermivora chrysoptera) is currently being considered for protected status under the U.S. Endangered Species Act. The creation of breeding habitat in the Appalachian Mountains is considered a conservation priority for this songbird, which is dependent on extensively forested landscapes with adequate availability of young forest. We modeled abundance of Golden-winged Warbler males in regenerating harvested forest stands that were 0-17 years postharvest at both mid-Appalachian and northeast Pennsylvania regional scales using stand and within-stand characteristics of 222 regenerating stands, 2010-2011. Variables that were most influential at the mid-Appalachian scale were different than those in the northeast region. Across the mid-Appalachian ecoregion, the proportion of young forest cover, i.e., shrub/scrub cover, within 1 km of regenerating stands best explained abundance of Golden-winged Warblers. Golden-winged Warbler response was best explained by a concave quadratic relationship in which abundance was highest with 5-15% land in young forest cover. We also found evidence that the amount of herbaceous cover, i.e., the amount of grasses and forbs, within a regenerating stand positively influenced abundance of Golden-winged Warblers. In northeastern Pennsylvania, where young forest cover is found in high proportions, the distance to the nearest regenerating stand best explained variation in abundance of Golden-winged Warblers. Abundance of Golden-winged Warblers was <1 male per survey when another regenerating stand was >1500 m away. When modeling within-stand features in the northeast region, many of the models were closely ranked, indicating that multiple variables likely explained Golden-winged Warbler response to within-stand conditions. Based on our findings, we have proposed several management guidelines for land managers interested in creating breeding habitat for Golden-winged Warblers using commercial timber operations. For example, we recommend when managing for Golden-winged Warblers in the central Appalachian Mountains that managers should strive for 15% young forest in a heavily forested landscape (>70% forest cover) and cluster stands within 1-2 km of other young forest habitats.
Resumo:
The low proportion of forested land and continuing degradation of existing forest cover are serious threats to the sustainability of forestry in Pakistan. Farm forestry has been identified as a feasible solution, particularly in the plain areas. Applying the Theory of Planned Behaviour in a survey of 124 farmers in Dera Ismail Khan district of Pakistan's North West Frontier Province showed that farmers' willingness to grow trees on their farms is a function of their attitudes towards the advantages and disadvantages of growing trees, their perception of the opinions of salient referents and factors that encourage and discourage farm level tree planting. Farmers viewed farm forestry as economically beneficial and environmentally friendly. Tree planting was perceived as increasing income, providing wood for fuel and furniture, controlling erosion and pollution and providing shade for humans and animals. Farmers saw hindrance in agricultural operations and the harbouring of insects, pests and diseases as negative impacts of tree planting; however, these were outweighed by their perceptions of positive impacts. Tree growing decisions of farmers were influenced by the opinions of family members, owners/tenants, fellow farmers and village elders. The factors that significantly predicted farm level tree planting were availability of barren land, lack of markets, lack of nurseries and damage caused by animals and humans. Farm forestry programmes are more likely to be successful if they acknowledge and address the factors which underlie farmers' reasons for planting or not planting trees.
Resumo:
Elephant poaching and the ivory trade remain high on the agenda at meetings of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Well-informed debates require robust estimates of trends, the spatial distribution of poaching, and drivers of poaching. We present an analysis of trends and drivers of an indicator of elephant poaching of all elephant species. The site-based monitoring system known as Monitoring the Illegal Killing of Elephants (MIKE), set up by the 10th Conference of the Parties of CITES in 1997, produces carcass encounter data reported mainly by anti-poaching patrols. Data analyzed were site by year totals of 6,337 carcasses from 66 sites in Africa and Asia from 2002–2009. Analysis of these observational data is a serious challenge to traditional statistical methods because of the opportunistic and non-random nature of patrols, and the heterogeneity across sites. Adopting a Bayesian hierarchical modeling approach, we used the proportion of carcasses that were illegally killed (PIKE) as a poaching index, to estimate the trend and the effects of site- and country-level factors associated with poaching. Important drivers of illegal killing that emerged at country level were poor governance and low levels of human development, and at site level, forest cover and area of the site in regions where human population density is low. After a drop from 2002, PIKE remained fairly constant from 2003 until 2006, after which it increased until 2008. The results for 2009 indicate a decline. Sites with PIKE ranging from the lowest to the highest were identified. The results of the analysis provide a sound information base for scientific evidence-based decision making in the CITES process.
Resumo:
Sediments from the Black Sea, a region historically dominated by forests and steppe landscapes, are a valuable source of detailed information on the changes in regional terrestrial and aquatic environments at decadal to millennial scales. Here we present multi-proxy environmental records (pollen, dinoflagellate cysts, Ca, Ti and oxygen isotope data) from the uppermost 305 cm of the core 22-GC3 (42°13.53′N, 36°29.55′E) collected from a water depth of 838 m in the southern part of the Black Sea in 2007. The records span the last ~ 18 kyr (all ages are given in cal kyr BP). The pollen data reveal the dominance of the Artemisia-steppe in the region, suggesting rather dry/cold environments ~ 18–14.5 kyr BP. Warming/humidity increase during melt-water pulses (~ 16.1–14.5 kyr BP), indicated by δ18O records from the 22-GC3 core sediment and from the Sofular Cave stalagmite, is expressed in more negative δ13C values from the Sofular Cave, usually interpreted as the spreading of C3 plants. The records representing the interstadial complex (~ 14.5–12.9 kyr BP) show an increase in temperature and moisture, indicated by forest development, increased primary productivity and reduced surface run-off, whereas the switch from primary terrigenous to primary authigenic Ca origin occurs ~ 500 yr later. The Younger Dryas cooling is clearly demonstrated by more negative δ13C values from the Sofular Cave and a reduction of pines. The early Holocene (11.7–8.5 kyr BP) interval reveals relatively dry conditions compared to the mostly moist and warm middle Holocene (8.5–5 kyr BP), which is characterized by the establishment of the species-rich warm mixed and temperate deciduous forests in the low elevation belt, temperate deciduous beech-hornbeam forests in the middle and cool conifer forest in upper mountain belt. The border between the early and middle Holocene in the vegetation records coincides with the opening of the Mediterranean corridor at ~ 8.3 kyr BP, as indicated by a marked change in the dinocyst assemblages and in the sediment lithology. Changes in the pollen assemblages indicate a reduction in forest cover after ~ 5 kyr BP, which was likely caused by increased anthropogenic pressure on the regional vegetation.
Resumo:
This paper uses a palaeoecological approach to examine the impact of drier climatic conditions of the Early-Mid-Holocene (ca 8000-4000 years ago) upon Amazonia's forests and their fire regimes. Palaeovegetation (pollen data) and palaeofire (charcoal) records are synthesized from 20 sites within the present tropical forest biome, and the underlying causes of any emergent patterns or changes are explored by reference to independent palaeoclimate data and present-day patterns of precipitation, forest cover and fire activity across Amazonia. During the Early-Mid-Holocene, Andean cloud forest taxa were replaced by lowland tree taxa as the cloud base rose while lowland ecotonal areas, which are presently covered by evergreen rainforest, were instead dominated by savannahs and/or semi-deciduous dry forests. Elsewhere in the Amazon Basin there is considerable spatial and temporal variation in patterns of vegetation disturbance and fire, which probably reflects the complex heterogeneous patterns in precipitation and seasonality across the basin, and the interactions between climate change, drought- and fire susceptibility of the forests, and Palaeo-Indian land use. Our analysis shows that the forest biome in most parts of Amazonia appears to have been remarkably resilient to climatic conditions significantly drier than those of today, despite widespread evidence of forest burning. Only in ecotonal areas is there evidence of biome replacement in the Holocene. From this palaeoecological perspective, we argue against the Amazon forest 'dieback' scenario simulated for the future.
Resumo:
•In current models, the ecophysiological effects of CO2 create both woody thickening and terrestrial carbon uptake, as observed now, and forest cover and terrestrial carbon storage increases that took place after the last glacial maximum (LGM). Here, we aimed to assess the realism of modelled vegetation and carbon storage changes between LGM and the pre-industrial Holocene (PIH). •We applied Land Processes and eXchanges (LPX), a dynamic global vegetation model (DGVM), with lowered CO2 and LGM climate anomalies from the Palaeoclimate Modelling Intercomparison Project (PMIP II), and compared the model results with palaeodata. •Modelled global gross primary production was reduced by 27–36% and carbon storage by 550–694 Pg C compared with PIH. Comparable reductions have been estimated from stable isotopes. The modelled areal reduction of forests is broadly consistent with pollen records. Despite reduced productivity and biomass, tropical forests accounted for a greater proportion of modelled land carbon storage at LGM (28–32%) than at PIH (25%). •The agreement between palaeodata and model results for LGM is consistent with the hypothesis that the ecophysiological effects of CO2 influence tree–grass competition and vegetation productivity, and suggests that these effects are also at work today.
Resumo:
Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM) we explored the implications of the differing climatic conditions generated by a general circulation model (GCM) in “normal” and “hosing” experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The “hosing” experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the “normal” experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems.
Resumo:
Targets for stabilizing climate change are often based on considerations of the impacts of different levels of global warming, usually assessing the time of reaching a particular level of warming. However, some aspects of the Earth system, such as global mean temperatures1 and sea level rise due to thermal expansion2 or the melting of large ice sheets3, continue to respond long after the stabilization of radiative forcing. Here we use a coupled climate–vegetation model to show that in turn the terrestrial biosphere shows significant inertia in its response to climate change. We demonstrate that the global terrestrial biosphere can continue to change for decades after climate stabilization. We suggest that ecosystems can be committed to long-term change long before any response is observable: for example, we find that the risk of significant loss of forest cover in Amazonia rises rapidly for a global mean temperature rise above 2 °C. We conclude that such committed ecosystem changes must be considered in the definition of dangerous climate change, and subsequent policy development to avoid it.
Resumo:
Atmospheric CO2 concentration has varied from minima of 170-200 ppm in glacials to maxima of 280-300 ppm in the recent interglacials. Photosynthesis by C-3 plants is highly sensitive to CO2 concentration variations in this range. Physiological consequences of the CO2 changes should therefore be discernible in palaeodata. Several lines of evidence support this expectation. Reduced terrestrial carbon storage during glacials, indicated by the shift in stable isotope composition of dissolved inorganic carbon in the ocean, cannot be explained by climate or sea-level changes. It is however consistent with predictions of current process-based models that propagate known physiological CO2 effects into net primary production at the ecosystem scale. Restricted forest cover during glacial periods, indicated by pollen assemblages dominated by non-arboreal taxa, cannot be reproduced accurately by palaeoclimate models unless CO2 effects on C-3-C-4 plant competition are also modelled. It follows that methods to reconstruct climate from palaeodata should account for CO2 concentration changes. When they do so, they yield results more consistent with palaeoclimate models. In conclusion, the palaeorecord of the Late Quaternary, interpreted with the help of climate and ecosystem models, provides evidence that CO2 effects at the ecosystem scale are neither trivial nor transient.
Resumo:
The global vegetation response to climate and atmospheric CO2 changes between the last glacial maximum and recent times is examined using an equilibrium vegetation model (BIOME4), driven by output from 17 climate simulations from the Palaeoclimate Modelling Intercomparison Project. Features common to all of the simulations include expansion of treeless vegetation in high northern latitudes; southward displacement and fragmentation of boreal and temperate forests; and expansion of drought-tolerant biomes in the tropics. These features are broadly consistent with pollen-based reconstructions of vegetation distribution at the last glacial maximum. Glacial vegetation in high latitudes reflects cold and dry conditions due to the low CO2 concentration and the presence of large continental ice sheets. The extent of drought-tolerant vegetation in tropical and subtropical latitudes reflects a generally drier low-latitude climate. Comparisons of the observations with BIOME4 simulations, with and without consideration of the direct physiological effect of CO2 concentration on C3 photosynthesis, suggest an important additional role of low CO2 concentration in restricting the extent of forests, especially in the tropics. Global forest cover was overestimated by all models when climate change alone was used to drive BIOME4, and estimated more accurately when physiological effects of CO2 concentration were included. This result suggests that both CO2 effects and climate effects were important in determining glacial-interglacial changes in vegetation. More realistic simulations of glacial vegetation and climate will need to take into account the feedback effects of these structural and physiological changes on the climate.
Resumo:
Inter-bedded volcanic and organic sediments from Erazo (Ecuador) indicate the presence of four different forest assemblages on the eastern Andean flank during the middle Pleistocene. Radiometric dates (40Ar–39Ar) obtained fromthe volcanic ash indicate that deposition occurred between 620,000 and 192,000 years ago. Examination of the organic sediment composition and the fossil pollen, wood and charcoal it contains provides insight into depositional environment, vegetation assemblage and fire history. The high organic content and abundance of macro fossils found throughout the sediment suggest that during the period of deposition the local environment was either a swamp or a shallow water body. The correlation of fire activity (peaks in charcoal abundance) with volcanic ash deposits through most of the record suggests that volcanoes were the main source of ignition. The low abundance of grass (typically b10%) throughout the sedimentary sequence along with the low abundance of other taxa indicative of open vegetation suggests the persistence of forest at Erazo. Four types of forest assemblage were identified (with the first taxa as the most dominant): i) Alnus-Arecaceae, ii) Miconia- Melastomataceae/Combretaceae-Moraceae/Urticaceae, iii) Arecaceae-Alnus, and iv) Podocarpus with Oreopanax sp. and Melastomataceae/Combretaceae. Changes in the forest floristic composition indicate high vegetation turnover and reassortment of taxa between upper and lower montane forests during the middle Pleistocene as well as the persistence of forest cover.
Resumo:
P>1. The use of indicators to identify areas of conservation importance has been challenged on several grounds, but nonetheless retains appeal as no more parsimonious approach exists. Among the many variants, two indicator strategies stand out: the use of indicator species and the use of metrics of landscape structure. While the first has been thoroughly studied, the same cannot be said about the latter. We aimed to contrast the relative efficacy of species-based and landscape-based indicators by: (i) comparing their ability to reflect changes in community integrity at regional and landscape spatial scales, (ii) assessing their sensitivity to changes in data resolution, and (iii) quantifying the degree to which indicators that are generated in one landscape or at one spatial scale can be transferred to additional landscapes or scales. 2. We used data from more than 7000 bird captures in 65 sites from six 10 000-ha landscapes with different proportions of forest cover in the Atlantic Forest of Brazil. Indicator species and landscape-based indicators were tested in terms of how effective they were in reflecting changes in community integrity, defined as deviations in bird community composition from control areas. 3. At the regional scale, indicator species provided more robust depictions of community integrity than landscape-based indicators. At the landscape scale, however, landscape-based indicators performed more effectively, more consistently and were also more transferable among landscapes. The effectiveness of high resolution landscape-based indicators was reduced by just 12% when these were used to explain patterns of community integrity in independent data sets. By contrast, the effectiveness of species-based indicators was reduced by 33%. 4. Synthesis and applications. The use of indicator species proved to be effective; however their results were variable and sensitive to changes in scale and resolution, and their application requires extensive and time-consuming field work. Landscape-based indicators were not only effective but were also much less context-dependent. The use of landscape-based indicators may allow the rapid identification of priority areas for conservation and restoration, and indicate which restoration strategies should be pursued, using remotely sensed imagery. We suggest that landscape-based indicators might often be a better, simpler, and cheaper strategy for informing decisions in conservation.