922 resultados para Flows in channels
Resumo:
In a recent paper [P. Glaister, Conservative upwind difference schemes for compressible flows in a Duct, Comput. Math. Appl. 56 (2008) 1787–1796] numerical schemes based on a conservative linearisation are presented for the Euler equations governing compressible flows of an ideal gas in a duct of variable cross-section, and in [P. Glaister, Conservative upwind difference schemes for compressible flows of a real gas, Comput. Math. Appl. 48 (2004) 469–480] schemes based on this philosophy are presented for real gas flows with slab symmetry. In this paper we seek to extend these ideas to encompass compressible flows of real gases in a duct. This will incorporate the handling of additional terms arising out of the variable geometry and the non-ideal nature of the gas.
Resumo:
A numerical scheme is presented for the solution of the Euler equations of compressible flow of a gas in a single spatial co-ordinate. This includes flow in a duct of variable cross-section as well as flow with slab, cylindrical or spherical symmetry and can prove useful when testing codes for the two-dimensional equations governing compressible flow of a gas. The resulting scheme requires an average of the flow variables across the interface between cells and for computational efficiency this average is chosen to be the arithmetic mean, which is in contrast to the usual ‘square root’ averages found in this type of scheme. The scheme is applied with success to five problems with either slab or cylindrical symmetry and a comparison is made in the cylindrical case with results from a two-dimensional problem with no sources.
Resumo:
A numerical scheme is presented for the solution of the Euler equations of compressible flow of a real gas in a single spatial coordinate. This include flow in a duct of variable cross-section as well as flow with cylindrical or spherical symmetry, and can prove useful when testing codes for the two-dimensional equations governing compressible flow of a real gas. The scheme is applied with success to a problem involving the interaction of converging and diverging cylindrical shocks for four equations of state and to a problem involving the reflection of a converging shock.
Resumo:
An approximate Riemann solver, in a Lagrangian frame of reference, is presented for the compressible flow equations with cylindrical and spherical symmetry, including flow in a duct of variable cross section. The scheme is applied to a cylindrically symmetric problem involving the interaction of shocks.
Resumo:
Forest canopies are important components of the terrestrial carbon budget, which has motivated a worldwide effort, FLUXNET, to measure CO2 exchange between forests and the atmosphere. These measurements are difficult to interpret and to scale up to estimate exchange across a landscape. Here we review the effects of complex terrain on the mean flow, turbulence, and scalar exchange in canopy flows, as exemplified by adjustment to forest edges and hills, including the effects of stable stratification. We focus on the fundamental fluid mechanics, in which developments in theory, measurements, and modeling, particularly through large-eddy simulation, are identifying important processes and providing scaling arguments. These developments set the stage for the development of predictive models that can be used in combination with measurements to estimate exchange at the landscape scale.
Resumo:
Interest in the impacts of climate change is ever increasing. This is particularly true of the water sector where understanding potential changes in the occurrence of both floods and droughts is important for strategic planning. Climate variability has been shown to have a significant impact on UK climate and accounting for this in future climate cahgne projections is essential to fully anticipate potential future impacts. In this paper a new resampling methodology is developed which includes the variability of both baseline and future precipitation. The resampling methodology is applied to 13 CMIP3 climate models for the 2080s, resulting in an ensemble of monthly precipitation change factors. The change factors are applied to the Eden catchment in eastern Scotland with analysis undertaken for the sensitivity of future river flows to the changes in precipitation. Climate variability is shown to influence the magnitude and direction of change of both precipitation and in turn river flow, which are not apparent without the use of the resampling methodology. The transformation of precipitation changes to river flow changes display a degree of non-linearity due to the catchment's role in buffering the response. The resampling methodology developed in this paper provides a new technique for creating climate change scenarios which incorporate the important issue of climate variability.
Resumo:
The non-quadratic conservation laws of the two-dimensional Euler equations are used to show that the gravest modes in a doubly-periodic domain with aspect ratio L = 1 are stable up to translations (or structurally stable) for finite-amplitude disturbances. This extends a previous result based on conservation of energy and enstrophy alone. When L 1, a saturation bound is established for the mode with wavenumber |k| = L −1 (the next-gravest mode), which is linearly unstable. The method is applied to prove nonlinear structural stability of planetary wave two on a rotating sphere.
Resumo:
The growth (melt) rate of frazil ice is governed by heat transfer away from (towards) the ice crystal, which can be represented by the Nusselt number. We discuss choices for the Nusselt number and turbulent length scale appropriate for frazil ice and note an inaccuracy in the study ”Frazil evolution in channels“ by Lars Hammar and Hung-Tao Shen, which has also led to potentially significant errors in several other papers. We correct this error and suggest an appropriate strategy for determining the Nusselt number applicable to frazil ice growth and melting.
Resumo:
This paper compares the effects of two indicative climate mitigation policies on river flows in six catchments in the UK with two scenarios representing un-mitigated emissions. It considers the consequences of uncertainty in both the pattern of catchment climate change as represented by different climate models and hydrological model parameterisation on the effects of mitigation policy. Mitigation policy has little effect on estimated flow magnitudes in 2030. By 2050 a mitigation policy which achieves a 2oC temperature rise target reduces impacts on low flows by 20-25% compared to a business-as-usual emissions scenario which increases temperatures by 4oC by the end of the 21st century, but this is small compared to the range in impacts between different climate model scenarios. However, the analysis also demonstrates that an early peak in emissions would reduce impacts by 40-60% by 2080 (compared with the 4oC pathway), easing the adaptation challenge over the long term, and can delay by several decades the impacts that would be experienced from around 2050 in the absence of policy. The estimated proportion of impacts avoided varies between climate model patterns and, to a lesser extent, hydrological model parameterisations, due to variations in the projected shape of the relationship between climate forcing and hydrological response.
Resumo:
This paper presents an assessment of the effects of climate change on river flow regimes in representative English catchments, using the UKCP09 climate projections. These comprise a set of 10,000 coherent climate scenarios, used here (i) to evaluate the distribution of potential changes in hydrological behaviour and (ii) to construct relationships between indicators of climate change and hydrological change. The study uses six catchments, and focuses on change in average flow, high flow (Q5) and low flow (Q95). There is a large range in hydrological change in each catchment between the plausible UKCP09 climate projections, with differences between catchments largely due to differences in catchment geology and baseline water balance. The range in change between the UKCP09 projections is in most catchments smaller than the range between changes with scenarios based on the CMIP3 ensemble of climate models, and earlier UK scenarios produce changes that tend towards the lower (drier) end of the UKCP09 range. The difference between emissions scenarios is small compared to the range across the 10,000 scenarios. Changes in high flows are largely driven by changes in winter precipitation, whilst changes in low flows are determined by changes in summer precipitation and temperature.
Resumo:
Concepts of time-dependent flow in the coupled solar wind-magnetosphere-ionosphere system are discussed and compared with the frequently-adopted steady-state paradigm. Flows are viewed as resulting from departures of the system from equilibrium excited by dayside and nightside reconnection processes, with the flows then taking the system back towards a new equilibrium configuration. The response of the system to reconnection impulses, continuous but unbalanced reconnection and balanced steady-state reconnection are discussed in these terms. It is emphasized that in the time-dependent case the ionospheric and interplanetary electric fields are generally inductively decoupled from each other; a simple mapping of the interplanetary electric field along equipotential field lines into the ionosphere occurs only in the electrostatic steady-state case.