922 resultados para Flow Through Capillary Tubes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"December 1980."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Work performed under contract no. W-7405-Eng-26"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small-angle neutron scattering measurements on a series of monodisperse linear entangled polystyrene melts in nonlinear flow through an abrupt 4:1 contraction have been made. Clear signatures of melt deformation and subsequent relaxation can be observed in the scattering patterns, which were taken along the centerline. These data are compared with the predictions of a recently derived molecular theory. Two levels of molecular theory are used: a detailed equation describing the evolution of molecular structure over all length scales relevant to the scattering data and a simplified version of the model, which is suitable for finite element computations. The velocity field for the complex melt flow is computed using the simplified model and scattering predictions are made by feeding these flow histories into the detailed model. The modeling quantitatively captures the full scattering intensity patterns over a broad range of data with independent variation of position within the contraction geometry, bulk flow rate and melt molecular weight. The study provides a strong, quantitative validation of current theoretical ideas concerning the microscopic dynamics of entangled polymers which builds upon existing comparisons with nonlinear mechanical stress data. Furthermore, we are able to confirm the appreciable length scale dependence of relaxation in polymer melts and highlight some wider implications of this phenomenon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When two solutions differing in solute concentration are separated by a porous membrane, the osmotic pressure will generate a net volume flux of the suspending fluid across the membrane; this is termed osmotic flow. We consider the osmotic flow across a membrane with circular cylindrical pores when the solute and the pore walls are electrically charged, and the suspending fluid is an electrolytic solution containing small cations and anions. Under the condition in which the radius of the pores and that of the solute molecules greatly exceed those of the solvent as well as the ions, a fluid mechanical and electrostatic theory is introduced to describe the osmotic flow in the presence of electric charge. The interaction energy, including the electrostatic interaction between the solute and the pore wall, plays a key role in determining the osmotic flow. We examine the electrostatic effect on the osmotic flow and discuss the difference in the interaction energy determined from the nonlinear Poisson-Boltzmann equation and from its linearized equation (the Debye-Hückel equation).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electrostatic model for osmotic flow through circular cylindrical pores is developed to describe the reflection coefficient for the membrane transport in the presence of surface charges on the pore wall and the solute. For a spherical solute placed at an arbitrary radial position in the pore, the electrical potential was computed by a spectral element method applied to the Poisson-Boltzmann equation together with the condition of electrical neutrality. The interaction energy between the surface charges was used to estimate the osmotic reflection coefficient. The proposed model predicts that even for a small Debye length compared to the pore radius, the repulsive electrostatic interaction between the surface charges could significantly increase the osmotic flow through the pore.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – The objective of this exploratory study is to investigate the “flow-through” or relationship between top-line measures of hotel operating performance (occupancy, average daily rate and revenue per available room) and bottom-line measures of profitability (gross operating profit and net operating income), before and during the recent great recession. Design/methodology/approach – This study uses data provided by PKF Hospitality Research for the period from 2007-2009. A total of 714 hotels were analyzed and various top-line and bottom-line profitability changes were computed using both absolute levels and percentages. Multiple regression analysis was used to examine the relationship between top and bottom line measures, and to derive flow-through ratios. Findings – The results show that average daily rate (ADR) and occupancy are significantly and positively related to gross operating profit per available room (GOPPAR) and net operating income per available room (NOIPAR). The evidence indicates that ADR, rather than occupancy, appears to be the stronger predictor and better measure of RevPAR growth and bottom-line profitability. The correlations and explained variances are also higher than those reported in prior research. Flow-through ratios range between 1.83 and 1.91 for NOIPAR, and between 1.55 and 1.65 for GOPPAR, across all chain-scales. Research limitations/implications – Limitations of this study include the limited number of years in the study period, limited number of hotels in a competitive set, and self-selection of hotels by the researchers. Practical implications – While ADR and occupancy work in combination to drive profitability, the authors' study shows that ADR is the stronger predictor of profitability. Hotel managers can use flow-through ratios to make financial forecasts, or use them as inputs in valuation models, to forecast future profitability. Originality/value – This paper extends prior research on the relationship between top-line measures and bottom-line profitability and serves to inform lodging owners, operators and asset managers about flow-through ratios, and how these ratios impact hotel profitability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quality of fish cultured using recycling units may differ from that of fish from outdoor farming units due to a range of deviating environmental determinants. This applies not only to flesh quality but also to morphological (processing) traits. This study evaluates processing yields of sibling fish cultured in two different farming units: (i) an outdoor pond aquaculture system with a flow-through regime (24.6 ± 0.2°C), and (ii) indoor tanks using a recirculation aquaculture system (RAS; 26.0 ± 1.0°C). Clear differences were observed in the most important processing traits, i.e. skinned trunk and fillet yields, which were both significantly higher (P < 0.01) in RAS fish due to significantly smaller (P < 0.05) head weight in fish of the flow-through system. Skin represented a significantly higher (P < 0.01) proportion of total weight in both RAS males and females. The most obvious difference was in the deposited fat weight, which was significantly higher (P < 0.01) in RAS fish. Visceral fat deposits were significantly higher (P < 0.01) in females and ventral and dorsal fat deposits higher (P > 0.05) in males.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impedance cardiography is an application of bioimpedance analysis primarily used in a research setting to determine cardiac output. It is a non invasive technique that measures the change in the impedance of the thorax which is attributed to the ejection of a volume of blood from the heart. The cardiac output is calculated from the measured impedance using the parallel conductor theory and a constant value for the resistivity of blood. However, the resistivity of blood has been shown to be velocity dependent due to changes in the orientation of red blood cells induced by changing shear forces during flow. The overall goal of this thesis was to study the effect that flow deviations have on the electrical impedance of blood, both experimentally and theoretically, and to apply the results to a clinical setting. The resistivity of stationary blood is isotropic as the red blood cells are randomly orientated due to Brownian motion. In the case of blood flowing through rigid tubes, the resistivity is anisotropic due to the biconcave discoidal shape and orientation of the cells. The generation of shear forces across the width of the tube during flow causes the cells to align with the minimal cross sectional area facing the direction of flow. This is in order to minimise the shear stress experienced by the cells. This in turn results in a larger cross sectional area of plasma and a reduction in the resistivity of the blood as the flow increases. Understanding the contribution of this effect on the thoracic impedance change is a vital step in achieving clinical acceptance of impedance cardiography. Published literature investigates the resistivity variations for constant blood flow. In this case, the shear forces are constant and the impedance remains constant during flow at a magnitude which is less than that for stationary blood. The research presented in this thesis, however, investigates the variations in resistivity of blood during pulsataile flow through rigid tubes and the relationship between impedance, velocity and acceleration. Using rigid tubes isolates the impedance change to variations associated with changes in cell orientation only. The implications of red blood cell orientation changes for clinical impedance cardiography were also explored. This was achieved through measurement and analysis of the experimental impedance of pulsatile blood flowing through rigid tubes in a mock circulatory system. A novel theoretical model including cell orientation dynamics was developed for the impedance of pulsatile blood through rigid tubes. The impedance of flowing blood was theoretically calculated using analytical methods for flow through straight tubes and the numerical Lattice Boltzmann method for flow through complex geometries such as aortic valve stenosis. The result of the analytical theoretical model was compared to the experimental impedance measurements through rigid tubes. The impedance calculated for flow through a stenosis using the Lattice Boltzmann method provides results for comparison with impedance cardiography measurements collected as part of a pilot clinical trial to assess the suitability of using bioimpedance techniques to assess the presence of aortic stenosis. The experimental and theoretical impedance of blood was shown to inversely follow the blood velocity during pulsatile flow with a correlation of -0.72 and -0.74 respectively. The results for both the experimental and theoretical investigations demonstrate that the acceleration of the blood is an important factor in determining the impedance, in addition to the velocity. During acceleration, the relationship between impedance and velocity is linear (r2 = 0.98, experimental and r2 = 0.94, theoretical). The relationship between the impedance and velocity during the deceleration phase is characterised by a time decay constant, ô , ranging from 10 to 50 s. The high level of agreement between the experimental and theoretically modelled impedance demonstrates the accuracy of the model developed here. An increase in the haematocrit of the blood resulted in an increase in the magnitude of the impedance change due to changes in the orientation of red blood cells. The time decay constant was shown to decrease linearly with the haematocrit for both experimental and theoretical results, although the slope of this decrease was larger in the experimental case. The radius of the tube influences the experimental and theoretical impedance given the same velocity of flow. However, when the velocity was divided by the radius of the tube (labelled the reduced average velocity) the impedance response was the same for two experimental tubes with equivalent reduced average velocity but with different radii. The temperature of the blood was also shown to affect the impedance with the impedance decreasing as the temperature increased. These results are the first published for the impedance of pulsatile blood. The experimental impedance change measured orthogonal to the direction of flow is in the opposite direction to that measured in the direction of flow. These results indicate that the impedance of blood flowing through rigid cylindrical tubes is axisymmetric along the radius. This has not previously been verified experimentally. Time frequency analysis of the experimental results demonstrated that the measured impedance contains the same frequency components occuring at the same time point in the cycle as the velocity signal contains. This suggests that the impedance contains many of the fluctuations of the velocity signal. Application of a theoretical steady flow model to pulsatile flow presented here has verified that the steady flow model is not adequate in calculating the impedance of pulsatile blood flow. The success of the new theoretical model over the steady flow model demonstrates that the velocity profile is important in determining the impedance of pulsatile blood. The clinical application of the impedance of blood flow through a stenosis was theoretically modelled using the Lattice Boltzman method (LBM) for fluid flow through complex geometeries. The impedance of blood exiting a narrow orifice was calculated for varying degrees of stenosis. Clincial impedance cardiography measurements were also recorded for both aortic valvular stenosis patients (n = 4) and control subjects (n = 4) with structurally normal hearts. This pilot trial was used to corroborate the results of the LBM. Results from both investigations showed that the decay time constant for impedance has potential in the assessment of aortic valve stenosis. In the theoretically modelled case (LBM results), the decay time constant increased with an increase in the degree of stenosis. The clinical results also showed a statistically significant difference in time decay constant between control and test subjects (P = 0.03). The time decay constant calculated for test subjects (ô = 180 - 250 s) is consistently larger than that determined for control subjects (ô = 50 - 130 s). This difference is thought to be due to difference in the orientation response of the cells as blood flows through the stenosis. Such a non-invasive technique using the time decay constant for screening of aortic stenosis provides additional information to that currently given by impedance cardiography techniques and improves the value of the device to practitioners. However, the results still need to be verified in a larger study. While impedance cardiography has not been widely adopted clinically, it is research such as this that will enable future acceptance of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rheological behavior of Brazilian orange juice with different water content (0.34-0.73 w/w) was studied at a wide range of temperatures (0.5-62 degrees C) using a concentric cylinder viscometer. The results indicated that the juices behave as pseudoplastic fluids with yield stress, being represented by the Herschel-Bulkley model. The rheological parameters were fitted as functions of both temperature and water content in the tested range. Based on dimensional analysis it was proposed a modified Reynolds number (Re-M), which includes the Herschel-Bulkley parameters. Experimental data of friction factors during heating and cooling processes of orange juice in laminar flow through circular tubes could be well correlated as a function of Re-M. (C) 1999 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steady laminar flow of a non-Newtonian fluid based on couple stress fluid theory, through narrow tubes of varying cross-sections has been studied theoretically. Asymptotic solutions are obtained for the basic equations and the expressions for the velocity field and the wall shear stress are derived for a general cross-section. Computation and discussions are carried out for the geometries which occur in the context of physiological flows or in particular blood flows. The tapered tubes and constricted tubes are of special importance. It is observed that increase in certain parameters results in erratic flow behaviour proximal to the constricted areas which is further enhanced by the increase in the geometric parameters. This elucidates the implications of the flow in the development of vascular lesions.