932 resultados para Fishery for individual species
Resumo:
There is little understanding in ecology as to how biodiversity patterns emerge from the distribution patterns of individual species. Here we consider the question of the contributions of rare (restricted range) and common (widespread) species to richness patterns. Considering a species richness pattern, is most of the spatial structure, in terms of where the peaks and troughs of diversity lie, caused by the common species or the rare species (or neither)? Using southern African and British bird richness patterns, we show here that commoner species are most responsible for richness patterns. While rare and common species show markedly different species richness patterns, most spatial patterning in richness is caused by relatively few, more common, species. The level of redundancy we found suggests that a broad understanding of what determines the majority of spatial variation in biodiversity may be had by considering only a minority of species.
Resumo:
1. We tested the species diversity-energy hypothesis using the British bird fauna. This predicts that temperature patterns should match diversity patterns. We also tested the hypothesis that the mechanism operates directly through effects of temperature on thermoregulatory loads; this further predicts that seasonal changes in temperature cause matching changes in patterns of diversity, and that species' body mass is influential.
2. We defined four assemblages using migration status (residents or visitors) and season (summer or winter distribution). Records of species' presence/absence in a total of 2362, 10 x 10-km, quadrats covering most of Britain were used, together with a wide selection of habitat, topographic and seasonal climatic data.
3. We fitted a logistic regression model to each species' distribution using the environmental data. We then combined these individual species models mathematically to form a diversity model. Analysis of this composite model revealed that summer temperature was the factor most strongly associated with diversity.
4. Although the species-energy hypothesis was supported, the direct mechanism, predicting an important role for body mass and matching seasonal patterns of change between diversity and temperature, was not supported.
5. However, summer temperature is the best overall explanation for bird diversity patterns in Britain. It is a better predictor of winter diversity than winter temperature. Winter diversity is predicted more precisely from environmental factors than summer diversity.
6. Climate change is likely to influence the diversity of different areas to different extents; for resident species, low diversity areas may respond more strongly as climate change progresses. For winter visitors, higher diversity areas may respond more strongly, while summer visitors are approximately neutral.
Resumo:
Climate change is expected to have an impact on plant communities as increased temperatures are expected to drive individual species' distributions polewards. The results of a revisitation study after c. 34years of 89 coastal sites in Scotland, UK, were examined to assess the degree of shifts in species composition that could be accounted for by climate change. There was little evidence for either species retreat northwards or for plots to become more dominated by species with a more southern distribution. At a few sites where significant change occurred, the changes were accounted for by the invasion, or in one instance the removal, of woody species. Also, the vegetation types that showed the most sensitivity to change were all early successional types and changes were primarily the result of succession rather than climate-driven changes. Dune vegetation appears resistant to climate change impacts on the vegetation, either as the vegetation is inherently resistant to change, management prevents increased dominance of more southerly species or because of dispersal limitation to geographically isolated sites.
Resumo:
Tese de Doutoramento, Ciências do Mar (Biologia Marinha)
Resumo:
The literature on species diversity of phytoplankton of tropical lakes is scarce, and for the main part comes from studies of the big lakes in Africa, or deep lakes in South America, leaving a gap in the information about small shallow tropical lakes. In the present work the phytoplankton species composition and diversity of 27 shallow lakes and ponds in Costa Rica (Central America) was studied. The species composition was found to agree with other studies of tropical lakes, with a dominance of Chlorophyta, Cyanophyta, or in some cases Bacillariophyta or Euglenophyta; and a general paucity of Chrysophyta and Cryptophyta. Species richness varied considerably among the lakes, and tended to decrease with an increase in lake elevation. A low evenness in the species abundances was found, with one or more species outnumbering the rest by several orders of magnitude. Individual species abundances and species composition was found to vary with time in Rio Cuarto Lake, a meromictic lake situated in a region with low seasonal change in precipitation. In comparison with the phytoplankton of temperate lakes, the phytoplankton of the tropical lakes studied tended to have a lower evenness of species abundances, although species richness may be similar to temperate figures in some cases. Diversity indices sensitive to changes in the abundance of rare species tend to be higher in the tropical lakes studied; diversity indices sensitive to changes in the numbers of abundant species tend to be similar between the temperate and tropical lakes examined.
Resumo:
The ability to predict the responses of ecological communities and individual species to human-induced environmental change remains a key issue for ecologists and conservation managers alike. Responses are often variable among species within groups making general predictions difficult. One option is to include ecological trait information that might help to disentangle patterns of response and also provide greater understanding of how particular traits link whole clades to their environment. Although this ‘‘trait-guild” approach has been used for single disturbances, the importance of particular traits on general responses to multiple disturbances has not been explored. We used a mixed model analysis of 19 data sets from throughout the world to test the effect of ecological and life-history traits on the responses of bee species to different types of anthropogenic environmental change. These changes included habitat loss, fragmentation, agricultural intensification, pesticides and fire. Individual traits significantly affected bee species responses to different disturbances and several traits were broadly predictive among multiple disturbances. The location of nests – above vs. below ground – significantly affected response to habitat loss, agricultural intensification, tillage regime (within agriculture) and fire. Species that nested above ground were on average more negatively affected by isolation from natural habitat and intensive agricultural land use than were species nesting below ground. In contrast below-ground-nesting species were more negatively affected by tilling than were above-ground nesters. The response of different nesting guilds to fire depended on the time since the burn. Social bee species were more strongly affected by isolation from natural habitat and pesticides than were solitary bee species. Surprisingly, body size did not consistently affect species responses, despite its importance in determining many aspects of individuals’ interaction with their environment. Although synergistic interactions among traits remain to be explored, individual traits can be useful in predicting and understanding responses of related species to global change.
Resumo:
Background: Variation in carrying capacity and population return rates is generally ignored in traditional studies of population dynamics. Variation is hard to study in the field because of difficulties controlling the environment in order to obtain statistical replicates, and because of the scale and expense of experimenting on populations. There may also be ethical issues. To circumvent these problems we used detailed simulations of the simultaneous behaviours of interacting animals in an accurate facsimile of a real Danish landscape. The models incorporate as much as possible of the behaviour and ecology of skylarks Alauda arvensis, voles Microtus agrestis, a ground beetle Bembidion lampros and a linyphiid spider Erigone atra. This allows us to quantify and evaluate the importance of spatial and temporal heterogeneity on the population dynamics of the four species. Results: Both spatial and temporal heterogeneity affected the relationship between population growth rate and population density in all four species. Spatial heterogeneity accounted for 23–30% of the variance in population growth rate after accounting for the effects of density, reflecting big differences in local carrying capacity associated with the landscape features important to individual species. Temporal heterogeneity accounted for 3–13% of the variance in vole, skylark and spider, but 43% in beetles. The associated temporal variation in carrying capacity would be problematic in traditional analyses of density dependence. Return rates were less than one in all species and essentially invariant in skylarks, spiders and beetles. Return rates varied over the landscape in voles, being slower where there were larger fluctuations in local population sizes. Conclusion: Our analyses estimated the traditional parameters of carrying capacities and return rates, but these are now seen as varying continuously over the landscape depending on habitat quality and the mechanisms of density dependence. The importance of our results lies in our demonstration that the effects of spatial and temporal heterogeneity must be accounted for if we are to have accurate predictive models for use in management and conservation. This is an area which until now has lacked an adequate theoretical framework and methodology.
Resumo:
The grass-free lawn is a novel development in modern ornamental horticulture where the traditional monoculture of grass is replaced by a variety of mowing-tolerant clonal forbs. It brings floral aesthetics and a diverse species approach to the use of lawn space. How the number of constituent forb species affects the aesthetic and structural performance of grass-free lawns was investigated using grass-free lawns composed of four, six and twelve British native clonal perennial forb species. Lawn productivity was seen to increase with increasing species number but the relationship was not linear. Plant cover was dynamic in all lawn types, varied between years and was not representative of individual species' floral performance. The behaviour of component species common to all lawns suggested that lawns with 12 species show greater structural stability than the lawns with a lower species number. Visual performance in lawns with the greatest species number was lower than in lawns with fewer species, with increasing variety in floral size and individual species floral productivity leading to a trade-off between diversity and floral performance. Individual species were seen to have different aesthetic functions in grass-free lawns either by providing flowers, ground coverage or both.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Biogeographical systems can be analyzed as networks of species and geographical units. Within such a biogeographical network, individual species may differ fundamentally in their linkage pattern, and therefore hold different topological roles. To advance our understanding of the relationship between species traits and large-scale species distribution patterns in archipelagos, we use a network approach to classify birds as one of four biogeographical species roles: peripherals, connectors, module hubs, and network hubs. These roles are based upon the position of species within the modular network of islands and species in Wallacea and the West Indies. We test whether species traits - including habitat requirements, altitudinal range-span, feeding guild, trophic level, and body length - correlate with species roles. In both archipelagos, habitat requirements, altitudinal range-span and body length show strong relations to species roles. In particular, species that occupy coastal- and open habitats, as well as habitat generalists, show higher proportions of connectors and network hubs and thus tend to span several biogeographical modules (i.e. subregions). Likewise, large body size and a wide altitudinal range-span are related to a wide distribution on many islands and across several biogeographical modules. On the other hand, species restricted to interior forest are mainly characterized as peripherals and, thus, have narrow and localized distributions within biogeographical modules rather than across the archipelago-wide network. These results suggest that the ecological amplitude of a species is highly related to its geographical distribution within and across bio geographical subregions and furthermore supports the idea that large-scale species distributions relate to distributions at the local community level. We finally discuss how our biogeographical species roles may correspond to the stages of the taxon cycle and other prominent theories of species assembly. © 2013 The Authors.
Resumo:
Tropiduridae (Squamata: Iguania) is a lizard taxon widely distributed in the neotropics. Among its representatives, some species are classified as generalists regarding habitat usage. Others exhibit a very restricted and probably relict distribution, and are strongly associated with predominantly sandy and dry habitats. Within this rather ecologically similar than phylogenetically closely related group we examined specimens of Eurolophosaurus amathites, E. divaricatus, Tropidurus hygomi, T. psammonastes for endoparasites. In all four species examined we recorded parasitic nematodes (Nemathelminthes: Nematoda). At least three nematode species were recovered: Parapharyngodon sp., Physaloptera lutzi and Strongyluris oscari, with Ph. lutzi being the most abundant parasite encountered in all lizard species examined. In spite of the hosts' habitat specialization, these parasites are also found frequently in non-psammophilous tropidurid species as well as in other squamates. Individual species richness per lizard was low, with usually just one species parasitizing at a time. These are the first parasites registered for these tropidurids and constitute a total of six new host records.
Resumo:
Strong genetic change over short spatial scales is surprising among marine species with high dispersal potential. Concordant breaks among several species signals a role for geographic barriers to dispersal. Along the coast of California, such breaks have not been seen across the biogeographic barrier of Point Conception, but other potential geographic boundaries have been surveyed less often.;We tested for strong-population structure in 11 species of Sebastes sampled across two regions containing potential dispersal barriers, and conducted a meta-analysis including four additional species. We show two strong breaks north of Monterey Bay, spanning an oceanographic gradient and an upwelling jet. Moderate genetic structure is just as common in the north as it is in the south, across the biogeographic break at Point Conception. Gene Xow is generally higher among deep-water species, but these conclusions are confounded by phylogeny. Species in the subgenus Sebastosomus have higher structure than those in the subgenus;Pteropodus, despite having larvae with longer pelagic phases. DiVerences in settlement behavior in the face of ocean currents might help explain these diVerences. Across similar species across the same coastal environment, we document a wide variety of patterns in gene Xow, suggesting that interaction of individual species traits such as settlement behavior with environmental factors such as;oceanography can strongly impact population structure
Resumo:
Pasteurellaceae are bacteria with an important role as primary or opportunistic, mainly respiratory, pathogens in domestic and wild animals. Some species of Pasteurellaceae cause severe diseases with high economic losses in commercial animal husbandry and are of great diagnostic concern. Because of new data on the phylogeny of Pasteurellaceae, their taxonomy has recently been revised profoundly, thus requiring an improved phenotypic differentiation procedure to identify the individual species of this family. A new and simplified procedure to identify species of Actinobacillus, Avibacterium, Gallibacterium, Haemophilus, Mannheimia, Nicoletella, and Pasteurella, which are most commonly isolated from clinical samples of diseased animals in veterinary diagnostic laboratories, is presented in the current study. The identification procedure was evaluated with 40 type and reference strains and with 267 strains from routine diagnostic analysis of various animal species, including 28 different bacterial species. Type, reference, and field strains were analyzed by 16S ribosomal RNA (rrs) and rpoB gene sequencing for unambiguous species determination as a basis to evaluate the phenotypic differentiation schema. Primary phenotypic differentiation is based on beta-nicotinamide adenine dinucleotide (beta-NAD) dependence and hemolysis, which are readily determined on the isolation medium. The procedure divides the 28 species into 4 groups for which particular biochemical reactions were chosen to identify the bacterial species. The phenotypic identification procedure allowed researchers to determine the species of 240 out of 267 field strains. The procedure is an easy and cost-effective system for the rapid identification of species of the Pasteurellaceae family isolated from clinical specimens of animals.
Resumo:
* Hundreds of experiments have now manipulated species richness (SR) of various groups of organisms and examined how this aspect of biological diversity influences ecosystem functioning. Ecologists have recently expanded this field to look at whether phylogenetic diversity (PD) among species, often quantified as the sum of branch lengths on a molecular phylogeny leading to all species in a community, also predicts ecological function. Some have hypothesized that phylogenetic divergence should be a superior predictor of ecological function than SR because evolutionary relatedness represents the degree of ecological and functional differentiation among species. But studies to date have provided mixed support for this hypothesis. * Here, we reanalyse data from 16 experiments that have manipulated plant SR in grassland ecosystems and examined the impact on above-ground biomass production over multiple time points. Using a new molecular phylogeny of the plant species used in these experiments, we quantified how the PD of plants impacts average community biomass production as well as the stability of community biomass production through time. * Using four complementary analyses, we show that, after statistically controlling for variation in SR, PD (the sum of branches in a molecular phylogenetic tree connecting all species in a community) is neither related to mean community biomass nor to the temporal stability of biomass. These results run counter to past claims. However, after controlling for SR, PD was positively related to variation in community biomass over time due to an increase in the variances of individual species, but this relationship was not strong enough to influence community stability. * In contrast to the non-significant relationships between PD, biomass and stability, our analyses show that SR per se tends to increase the mean biomass production of plant communities, after controlling for PD. The relationship between SR and temporal variation in community biomass was either positive, non-significant or negative depending on which analysis was used. However, the increases in community biomass with SR, independently of PD, always led to increased stability. These results suggest that PD is no better as a predictor of ecosystem functioning than SR. * Synthesis. Our study on grasslands offers a cautionary tale when trying to relate PD to ecosystem functioning suggesting that there may be ecologically important trait and functional variation among species that is not explained by phylogenetic relatedness. Our results fail to support the hypothesis that the conservation of evolutionarily distinct species would be more effective than the conservation of SR as a way to maintain productive and stable communities under changing environmental conditions.