954 resultados para Fine-structure
Resumo:
The local and medium-range structures of siloxane-POE hybrids doped with Fe(III) ions and prepared by the sol-gel process were investigated by X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) and small-angle X-ray scattering (SAXS), respectively. The experimental results show that the structure of these composites depends on the doping level. EXAFS data reveal that, for low doping levels ([O]/[Fe] > 40, oxygens being of the ether-type of the POE chains), Fe(III) ions are surrounded essentially by a shell of chlorine atoms, suggesting the formation of FeCl4- anions. At high doping levels ([O]/[Fe] < 20), Fe(III) ions interacts mainly with oxygen atoms and form FeOx species. The relative proportion of FeOx species increases with iron concentration, this result being consistent with the results of SAXS measurements showing that increasing iron doping induces the formation of iron-rich nanodomains embedded in the polymer matrix.
Resumo:
The local order around K for K(CF3SO3) doped Siloxane-Poly(propyleneoxide) hybrids at different doping concentration was investigated by x-ray absorption spectroscopy (EXAFS and XANES) at the potassium K-edge. The results indicate that the use of HCl as hydrolytic catalyst for gelation induces the precipitation of KCl. The ionic conductivity is strongly related to the presence of oxygen atoms as first neighbours around potassium and to the amount of KCl precipitate. © Physica Scripta 2005.
Resumo:
Ba(Zr0.75Ti0.25)O3 (BZT-75/25) powders were synthesized by the polymeric precursor method. Samples were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) techniques. Their electronic structures were evaluated by first-principle quantum mechanical calculations based on density functional theory at the B3LYP level. Their optical properties were investigated by ultraviolet-visible (UV-Vis) spectroscopy and photoluminescence (PL) measurements at room temperature. XRD patterns and Rietveld refinement data indicate that the samples have a cubic structure. XANES spectra confirm the presence of pyramidal [TiO5] clusters and octahedral [TiO6] clusters in the disordered BZT-75/25 powders. EXAFS spectra indicate distortion of Ti-O and Ti-O-Ti bonds the first and second coordination shells, respectively. UV-Vis absorption spectra confirm the presence of different optical bandgap values and the band structure indicates an indirect bandgap for this material. The density of states demonstrates that intermediate energy levels occur between the valence band (VB) and the conduction band (CB). These electronic levels are due to the predominance of 4d orbitals of Zr atoms in relation to 3d orbitals of Ti atoms in the CB, while the VB is dominated by 2p orbitals related to O atoms. There was good correlation between the experimental and theoretical optical bandgap values. When excited at 482 nm at room temperature, BZT-75/25 powder treated at 500 C for 2 h exhibited broad and intense PL emission with a maximum at 578 nm in the yellow region. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The knowledge of electronic and local structures is a fundamental step towards understanding the properties of ferroelectric ceramics. X-ray absorption near-edge structure (XANES) of Pb1-xLaxZr0.40Ti0.60O3 ferroelectric samples was measured in order to know how the local order and electronic structure are related to their ferroelectric property, which was tailored by the substitution of lead by lanthanum atoms. The analysis of XANES spectra collected at Ti K- and L-edges XANES showed that the substitution of Pb by La leads to a decrement of local distortion around Ti atoms on the TiO6 octahedron. The analysis of O K-edge XANES spectra showed that the hybridization between O 2p and Pb 6sp states is related to the displacement of Ti atoms in the TiO6 octahedra. Based on these results, it is possible to determine that the degree of ferroelectricity in these samples and the manifestation of relaxor behavior are directly related to the weakening of O 2p and Pb 6sp hybridization. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4720472]
Resumo:
This thesis focuses on synthesis as well as investigations of the electronic structure and properties of Heusler compounds for spintronic and thermoelectric applications.rnThe first part reports on the electronic and crystal structure as well as the mechanical, magnetic, and transport properties of the polycrystalline Heusler compound Co2MnGe. The crystalline structure was examined in detail by extended X-ray absorption fine structure spectroscopy and anomalous X-ray diffraction. The low-temperature magnetic moment agrees well with the Slater-Pauling rule and indicates a half-metallic ferromagnetic state of the compound, as is predicted by ab-initio calculations. Transport measurements and hard X-ray photoelectron spectroscopy (HAXPES) were performed to explain the electronic structure of the compound.rnA major part of the thesis deals with a systematical investigation of Heusler compounds for thermoelectric applications. Few studies have been reported on thermoelectric properties of p-type Heusler compounds. Therefore, this thesis focuses on the search for new p-type Heusler compounds with high thermoelectric efficiency. The substitutional series NiTi1−xMxSn and CoTi1−xMxSb (where M = Sc, V and 0 ≤ x ≤ 0.2) were synthesized and investigated theoretically and experimentally with respect to electronic structure and transport properties. The results show the possibility to create n-type and p-type thermoelectrics within one Heusler compound. The pure compounds showed n-type behavior, while under Sc substitution the system switched to p-type behavior. A maximum Seebeck coefficient of +230 μV/K (at 350 K) was obtained for NiTi0.26Sc0.04Zr0.35Hf0.35Sn, which is one of the highest values for p-type thermoelectric compounds based on Heusler alloys up to now. HAXPES valence band measurement show massive in gap states for the parent compounds NiTiSn, CoTiSb and NiTi0.3Zr0.35Hf0.35Sn. This proves that the electronic states close to the Fermi energy play a key role for the behavior of the transport properties. Furthermore, the electronic structure of the gapless Heusler compounds PtYSb, PtLaBi and PtLuSb were investigated by bulk sensitive HAXPES. The linear behavior of the spectra close to εF proves the bulk origin of Dirac-cone type density of states. Furthermore, a systematic study on the optical and transport properties of PtYSb is presented. The compound exhibits promising thermoelectric properties with a high figure of merit (ZT = 0.2) and a Hall mobility μh of 300 cm2/Vs at 350 K.rnThe last part of this thesis describes the linear dichroism in angular-resolved photoemission from the valence band of NiTi0.9Sc0.1Sn and NiMnSb. High resolution photoelectron spectroscopy was performed with an excitation energy of hν = 7.938 keV. The linear polarization of the photons was changed using an in-vacuum diamond phase retarder. Noticeable linear dichroism is found in the valence bands and this allows for a symmetry analysis of the contributing states. The differences in the spectra are found to be caused by symmetry dependent angular asymmetry parameters, and these occur even in polycrystalline samples without preferential crystallographic orientation.rnIn summary, Heusler compounds with 1:1:1 and 2:1:1 stoichiometry were synthesized and examined by chemical and physical methods. Overall, this thesis shows that the combination of first-principle calculations, transport measurements and high resolution high energy photoelectron spectroscopy analysis is a very powerful tool for the design and development of new materials for a wide range of applications from spintronic applications to thermoelectric applications.rn
Resumo:
The development of the brain and its underlying circuitry is dependent on the formation of trillions of chemical synapses, which are highly specialized contacts that regulate the flow of information from one neuron to the next. It is through these synaptic connections that neurons wire together into networks capable of performing specific tasks, and activity-dependent changes in their structural and physiological state is one way that the brain is thought to adapt and store information. At the ultrastructural level, developmental and activity-dependent changes in the size and shape of dendritic spines have been well documented, and it is widely believed that structural changes in spines are a hallmark sign of synapse maturation and alteration of synaptic physiology. While changes in spine structure have been studied extensively, changes in one of its most prominent components, the postsynaptic density (PSD), have largely evaded observation. The PSD is a protein-rich organelle on the cytoplasmic side of the postsynaptic membrane, where it sits in direct opposition to the presynaptic terminal. The PSD functions both to cluster neurotransmitter receptors at the cell surface as well as organize the intracellular signaling molecules responsible for transducing extracellular signals to the postsynaptic cell. Much is known about the chemical composition of the PSD, but the structural arrangement of its molecular components is not well documented. Adding to the difficulty of understanding such a complex mass of protein machinery is the fact that its protein composition is known to change in response to synaptic activity, meaning that its structure is plastic and no two PSDs are identical. Here, immuno-gold labeling and electron tomography of PSDs isolated throughout development was used to track changes in both the structure and molecular composition of the PSD. State-of-the-art cryo-electron tomography was used to study the fine structure of the PSD during development, and provides an unprecedented glimpse into its molecular architecture in an un-fixed, unstained and hydrated state. Through this analysis, large structural and compositional changes are apparent and suggest a model by which the PSD is first assembled as a mesh-like lattice of proteins that function as support for the later recruitment of various PSD components. Spatial analysis of the recruitment of proteins into the PSD demonstrated that its assembly has an underlying order.
Resumo:
The DNA in eukaryotic chromosomes is organized into a series of loops that are permanently attached at their bases to the nuclear scaffold or matrix at sequences known as scaffold-attachment or matrix-attachment regions. At present, it is not clear what effect affixation to the nuclear matrix has on chromatin architecture in important regulatory regions such as origins of replication or the promoter regions of genes. In the present study, we have investigated cell-cycle-dependent changes in the chromatin structure of a well characterized replication initiation zone in the amplified dihydrofolate reductase domain of the methotrexate-resistant Chinese hamster ovary cell line CHOC 400. Replication can initiate at any of multiple potential sites scattered throughout the 55-kilobase intergenic region in this domain, with two subregions (termed ori-β and ori-γ) being somewhat preferred. We show here that the chromatin in the ori-β and ori-γ regions undergoes dramatic alterations in micrococcal nuclease hypersensitivity as cells cross the G1/S boundary, but only in those copies of the amplicon that are affixed to the nuclear matrix. In contrast, the fine structure of chromatin in the promoter of the dihydrofolate reductase gene does not change detectably as a function of matrix attachment or cell-cycle position. We suggest that attachment of DNA to the nuclear matrix plays an important role in modulating chromatin architecture, and this could facilitate the activity of origins of replication.
Resumo:
High-resolution physical maps of the genomes of three Rhodobacter capsulatus strains, derived from ordered cosmid libraries, were aligned. The 1.2-Mb segment of the SB1003 genome studied here is adjacent to a 1-Mb region analyzed previously [Fonstein, M., Nikolskaya, T. & Haselkorn, H. (1995) J. Bacteriol. 177, 2368-2372]. Probes derived from the ordered cosmid set of R. capsulatus SB1003 were used to link cosmids from the St. Louis and 2.3.1 strain libraries. Cosmids selected this way did not merge into a single contig but formed several unlinked groups. EcoRV restriction maps of the ordered cosmids were then constructed using lambda terminase and fused to derive fragments of the chromosomal map. In order to link these fragments, their ends were transcribed to produce secondary probes for hybridization to gridded cosmid libraries of the same strains. This linking reduced the number of subcontigs to three for the St. Louis strain and one for the 2.3.1 strain. Hybridization of the same probes back to the ordered cosmid set of SB1003 positioned the subcontigs on the high-resolution physical map of SB1003. The final alignment of the restriction maps shows numerous large and small translocations in this 1.2-Mb chromosomal region of the three Rhodobacter strains. In addition, the chromosomes of the three strains, whose fine-structure maps can now be compared over 2.2 Mb, are seen to contain regions of 15-80 kb in which restriction sites are highly polymorphic, interspersed among regions in which the positions of restriction sites are highly conserved.
Resumo:
In this paper, we report the results of molybdenum K-edge X-ray absorption studies performed on the oxidized and reduced active sites of the sulfite dehydrogenase from Starkeya novella. Our results provide the first direct structural information on the active site of the oxidized form of this enzyme and confirm the conclusions derived from protein crystallography that the molybdenum coordination is analogous to that of the sulfite oxidases. The molybdenum atom of the oxidized enzyme is bound by two Mo=O ligands at 1.73 angstrom and three thiolate Mo-S ligands at 2.42 angstrom, whereas the reduced enzyme has one oxo at 1.74 angstrom, one long oxygen at 2.19 angstrom (characteristic of Mo-OH2), and three Mo-S ligands at 2.40 angstrom.
Resumo:
Paper-based phenolic laminates are used extensively in the electrical industry. Many small components are fabricated from these materials by the process known as punching. Recently an investigation was carried out to study the effect of processing variables on the punching properties. It was concluded that further work would be justified and that this should include a critical examination of the resin properties in a more controlled and systematic manner. In this investigation an attempt has been made to assess certain features of the resin structure in terms of thermomechanical properties. The number of crosslinks in the system was controlled using resins based on phenol and para-cresol formulations. Intramolecular hydrogen bonding effects were examined using substituted resins and a synthetically derived phenol based on 1,3-di-(o-hydroxyphenyl) propane.. A resin system was developed using the Friedel Crafts reaction to examine inter-molecular hydrogen bonding at the resin-paper interface. The punching properties of certain selected resins were assessed on a qualitative basis. In addition flexural and dynamic mechanical properties were determined in a general study of the structure-property relationships of these materials. It has been shown that certain features of the resin structure significantly influenced mechanical properties. :F'urther, it was noted that there is a close relationship between punching properties, mechanical damping and flexural strain. This work includes a critical examination of the curing mechanism and views are postulated in an attempt to extend knowledge in this area of the work. Finally, it is argued that future work should be based on a synthetic approach and that dynamic mechanical testing would provide a powerful tool In developing a deeper understanding of the resin fine structure.
Resumo:
Deep-sea ferromanganese nodules accumulate trace elements from seawater and underlying sediment porewaters during the growth of concentric mineral layers over millions of years. These trace elements have the potential to record past ocean geochemical conditions. The goal of this study was to determine whether Fe mineral alteration occurs and how the speciation of trace elements responds to alteration over ∼3.7 Ma of marine ferromanganese nodule (MFN) formation, a timeline constrained by estimates from 9Be/10Be concentrations in the nodule material. We determined Fe-bearing phases and Fe isotope composition in a South Pacific Gyre (SPG) nodule. Specifically, the distribution patterns and speciation of trace element uptake by these Fe phases were investigated. The time interval covered by the growth of our sample of the nodule was derived from 9Be/10Be accelerator mass spectrometry (AMS). The composition and distribution of major and trace elements were mapped at various spatial scales, using micro-X-ray fluorescence (μXRF), electron microprobe analysis (EMPA), and inductively coupled plasma mass spectrometry (ICP-MS). Fe phases were characterized by micro-extended X-ray absorption fine structure (μEXAFS) spectroscopy and micro-X-ray diffraction (μXRD). Speciation of Ti and V, associated with Fe, was measured using micro-X-ray absorption near edge structure (μXANES) spectroscopy. Iron isotope composition (δ56/54Fe) in subsamples of 1-3 mm increments along the radius of the nodule was determined with multiple-collector ICP-MS (MC-ICP-MS). The SPG nodule formed through primarily hydrogeneous inputs at a rate of 4.0 ± 0.4 mm/Ma. The nodule exhibited a high diversity of Fe mineral phases: feroxyhite (δ-FeOOH), goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and poorly ordered ferrihydrite-like phases. These findings provide evidence that Fe oxyhydroxides within the nodule undergo alteration to more stable phases over millions of years. Trace Ti and V were spatially correlated with Fe and found to be adsorbed to Fe-bearing minerals. Ti/Fe and V/Fe ratios, and Ti and V speciation, did not vary along the nodule radius. The δ56/54Fe values, when averaged over sample increments representing 0.25 to 0.75 Ma, were homogeneous within uncertainty along the nodule radius, at -0.12 ± 0.07 ‰ (2sd, n=10). Our results indicate that the Fe isotope composition of the nodule remained constant during nodule growth and that mineral alteration did not affect the primary Fe isotope composition of the nodule. Furthermore, the average δ56/54Fe value of -0.12 ‰ we find is consistent with Fe sourced from continental eolian particles (dust). Despite mineral alteration, the trace element partitioning of Ti and V, and Fe isotope composition, do not appear to change within the sensitivity of our measurements. These findings suggest that Fe oxyhydroxides within hydrogenetic ferromanganese nodules are out of geochemical contact with seawater once they are covered by subsequent concentric mineral layers. Even though Fe-bearing minerals are altered, trace element ratios, speciation and Fe isotope composition are preserved within the nodule.
Resumo:
Mesenchymal stem cells (MSCs) represent multipotent stromal cells that can differentiate into a variety of cell types, including osteoblasts (bone cells), chondrocytes (cartilage cells), and adipocytes (fat cells). Their multi-potency provides a great promise as a cell source for tissue engineering and cell-based therapy for many diseases, particularly bone diseases and bone formation. To be able to direct and modulate the differentiation of MSCs into the desired cell types in situ in the tissue, nanotechnology is introduced and used to facilitate or promote cell growth and differentiation. These nano-materials can provide a fine structure and tuneable surface in nanoscales to help the cell adhesion and promote the cell growth and differentiation of MSCs. This could be a dominant direction in future for stem cells based therapy or tissue engineering for various diseases. Therefore, the isolation, manipulation, and differentiation of MSCs are very important steps to make meaningful use of MSCs for disease treatments. In this chapter, we have described a method of isolating MSC from human bone marrow, and how to culture and differentiate them in vitro. We have also provided research methods on how to use MSCs in an in vitro model and how to observe MSC biological response on the surface of nano-scaled materials.
Resumo:
X-ray absorpion near edge structure (xanes) of copper compounds with copper in 1+, 2+ and 3+ states has been studied. Extended x-ray absorption fine structure (exafs) has been employed to determine bond distances and coordination numbers in several model copper compounds. Employing bothxanes andexafs, the structure of the copper complex formed by the micro-organismPseudomonas aeruginosa has been shown to be square-planar with the Cu-O distance close to that in cupric glucuronates and cupric acetylacetonate.exafs has been shown to be useful for studying metal-metal bonds in copper carboxylates.