840 resultados para Filtering
Resumo:
Ultrasonography has an inherent noise pattern, called speckle, which is known to hamper object recognition for both humans and computers. Speckle noise is produced by the mutual interference of a set of scattered wavefronts. Depending on the phase of the wavefronts, the interference may be constructive or destructive, which results in brighter or darker pixels, respectively. We propose a filter that minimizes noise fluctuation while simultaneously preserving local gray level information. It is based on steps to attenuate the destructive and constructive interference present in ultrasound images. This filter, called interference-based speckle filter followed by anisotropic diffusion (ISFAD), was developed to remove speckle texture from B-mode ultrasound images, while preserving the edges and the gray level of the region. The ISFAD performance was compared with 10 other filters. The evaluation was based on their application to images simulated by Field II (developed by Jensen et al.) and the proposed filter presented the greatest structural similarity, 0.95. Functional improvement of the segmentation task was also measured, comparing rates of true positive, false positive and accuracy. Using three different segmentation techniques, ISFAD also presented the best accuracy rate (greater than 90% for structures with well-defined borders). (E-mail: fernando.okara@gmail.com) (C) 2012 World Federation for Ultrasound in Medicine & Biology.
Resumo:
Un livello di sicurezza che prevede l’autenticazione e autorizzazione di un utente e che permette di tenere traccia di tutte le operazioni effettuate, non esclude una rete dall’essere soggetta a incidenti informatici, che possono derivare da tentativi di accesso agli host tramite innalzamento illecito di privilegi o dai classici programmi malevoli come virus, trojan e worm. Un rimedio per identificare eventuali minacce prevede l’utilizzo di un dispositivo IDS (Intrusion Detection System) con il compito di analizzare il traffico e confrontarlo con una serie d’impronte che fanno riferimento a scenari d’intrusioni conosciute. Anche con elevate capacità di elaborazione dell’hardware, le risorse potrebbero non essere sufficienti a garantire un corretto funzionamento del servizio sull’intero traffico che attraversa una rete. L'obiettivo di questa tesi consiste nella creazione di un’applicazione con lo scopo di eseguire un’analisi preventiva, in modo da alleggerire la mole di dati da sottoporre all’IDS nella fase di scansione vera e propria del traffico. Per fare questo vengono sfruttate le statistiche calcolate su dei dati forniti direttamente dagli apparati di rete, cercando di identificare del traffico che utilizza dei protocolli noti e quindi giudicabile non pericoloso con una buona probabilità.
Resumo:
I sistemi di raccomandazione sono una tipologia di sistemi di filtraggio delle informazioni che cercano di prevedere la valutazione o la preferenza che l'utente potrebbe dare ad un elemento. Sono diventati molto comuni in questi ultimi anni e sono utilizzati da una vasta gamma di applicazioni, le più popolari riguardano film, musica, notizie, libri, articoli di ricerca e tag di social networking. Tuttavia, ci sono anche sistemi di raccomandazione per i ristoranti, servizi finanziari, assicurazioni sulla vita e persone (siti di appuntamenti online, seguaci di Twitter). Questi sistemi, tuttora oggetto di studi, sono già applicati in un'ampia gamma di settori, come ad esempio le piattaforme di scoperta dei contenuti, utilizzate on-line per aiutare gli utenti nella ricerca di trasmissioni televisive; oppure i sistemi di supporto alle decisioni che utilizzano sistemi di raccomandazione avanzati, basati sull'apprendimento delle conoscenze, per aiutare i fruitori del servizio nella soluzioni di problemi complessi. Inoltre, i sistemi di raccomandazione sono una valida alternativa agli algoritmi di ricerca in quanto aiutano gli utenti a scoprire elementi che potrebbero non aver trovato da soli. Infatti, sono spesso implementati utilizzando motori di ricerca che indicizzano dati non tradizionali.
Resumo:
La tesi propone una soluzione middleware per scenari in cui i sensori producono un numero elevato di dati che è necessario gestire ed elaborare attraverso operazioni di preprocessing, filtering e buffering al fine di migliorare l'efficienza di comunicazione e del consumo di banda nel rispetto di vincoli energetici e computazionali. E'possibile effettuare l'ottimizzazione di questi componenti attraverso operazioni di tuning remoto.
Resumo:
This paper presents methods based on Information Filters for solving matching problems with emphasis on real-time, or effectively real-time applications. Both applications discussed in this work deal with ultrasound-based rigid registration in computer-assisted orthopedic surgery. In the first application, the usual workflow of rigid registration is reformulated such that registration algorithms would iterate while the surgeon is acquiring ultrasound images of the anatomy to be operated. Using this effectively real-time approach to registration, the surgeon would then receive feedback in order to better gauge the quality of the final registration outcome. The second application considered in this paper circumvents the need to attach physical markers to bones for anatomical referencing. Experiments using anatomical objects immersed in water are performed in order to evaluate and compare the different methods presented herein, using both 2D as well as real-time 3D ultrasound.
Resumo:
To determine the agreement between intraocular pressure and the 'Wuerzburg bleb classification score', as well as between single items of the score and intraocular pressure. Interobserver variability was analyzed.
Resumo:
Cramér Rao Lower Bounds (CRLB) have become the standard for expression of uncertainties in quantitative MR spectroscopy. If properly interpreted as a lower threshold of the error associated with model fitting, and if the limits of its estimation are respected, CRLB are certainly a very valuable tool to give an idea of minimal uncertainties in magnetic resonance spectroscopy (MRS), although other sources of error may be larger. Unfortunately, it has also become standard practice to use relative CRLB expressed as a percentage of the presently estimated area or concentration value as unsupervised exclusion criterion for bad quality spectra. It is shown that such quality filtering with widely used threshold levels of 20% to 50% CRLB readily causes bias in the estimated mean concentrations of cohort data, leading to wrong or missed statistical findings-and if applied rigorously-to the failure of using MRS as a clinical instrument to diagnose disease characterized by low levels of metabolites. Instead, absolute CRLB in comparison to those of the normal group or CRLB in relation to normal metabolite levels may be more useful as quality criteria. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
Long-term electrocardiogram (ECG) often suffers from relevant noise. Baseline wander in particular is pronounced in ECG recordings using dry or esophageal electrodes, which are dedicated for prolonged registration. While analog high-pass filters introduce phase distortions, reliable offline filtering of the baseline wander implies a computational burden that has to be put in relation to the increase in signal-to-baseline ratio (SBR). Here we present a graphics processor unit (GPU) based parallelization method to speed up offline baseline wander filter algorithms, namely the wavelet, finite, and infinite impulse response, moving mean, and moving median filter. Individual filter parameters were optimized with respect to the SBR increase based on ECGs from the Physionet database superimposed to auto-regressive modeled, real baseline wander. A Monte-Carlo simulation showed that for low input SBR the moving median filter outperforms any other method but negatively affects ECG wave detection. In contrast, the infinite impulse response filter is preferred in case of high input SBR. However, the parallelized wavelet filter is processed 500 and 4 times faster than these two algorithms on the GPU, respectively, and offers superior baseline wander suppression in low SBR situations. Using a signal segment of 64 mega samples that is filtered as entire unit, wavelet filtering of a 7-day high-resolution ECG is computed within less than 3 seconds. Taking the high filtering speed into account, the GPU wavelet filter is the most efficient method to remove baseline wander present in long-term ECGs, with which computational burden can be strongly reduced.