945 resultados para Film-forming properties


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zein films plasticized with oleic acid were formed by solution casting, by the stretching of moldable resins, and by blown film extrusion. The effects of the forming process on film structure were investigated by X-ray diffraction. Wide-angle X-ray scattering (WAXS) patterns showed d-spacings at 4.5 and 10 angstrom, which were attributed to the zein alpha-helix backbone and inter-helix packing, respectively. The 4.5.angstrom d-spacing remained stable under processing while the 10 angstrom d-spacing varied with processing treatment. Small-angle X-ray scattering (SAXS) detected a long-range periodicity for the formed films but not for unprocessed zein, which suggests that the forming process-promoted film structure development is possibly aided by oleic acid. The SAXS d-spacing varied among the samples (130-238 angstrom) according to zein origin and film-forming method. X-ray scattering data suggest that the zein molecular structure resists processing but the zein supramolecular arrangements in the formed films are dependent on processing methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Langmuir-Blodgett (LB) technique is a powerful tool to fabricate ultrathin films with highly ordered structures and controllable molecular array for efficient energy and electron transfer, allowing the construction of devices at molecular level. One method to obtain LB films consists in the mixture of classical film-forming molecules, for example Stearic Acid (SA) and functional metal complex. In this work NH(4)[Eu(bmdm)(4)], where the organic ligand bmdm is (butyl methoxy-dibenzoyl-methane) or (1-(4-methoxyphenyl)-3-(4-tert-butylphenyl)propane-1,3-dione) was used to build up Langmuir and LB films. Langmuir isotherms were obtained from (i) NH(4)[Eu(bmdm)(4)] complex and (ii) NH(4)[Eu(bmdm)(4)]/SA (1:1). Results indicated that (i) form multilayer structure; however the surface pressure was insufficient to obtain LB films, and (ii) can easily reproduce and build LB films. The dependence of number of layers in the UV absorption spectra suggest that the complex did not hydrolyze or show decomposition, UV spectral differences observed between the solution and the LB film indicate that the complex has a highly ordered arrangement in the film and the complex has an interaction with SA. Excitation spectra confirm a ligand-europium energy transfer mechanism. The transition lines of Eu(3+) ion were observed in emission spectra of all films, the photoluminescence spectra indicate a fluorescence enhanced effect with the number of LB layers. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The wide variety of molecular architectures used in sensors and biosensors and the large amount of data generated with some principles of detection have motivated the use of computational methods, such as information visualization techniques, not only to handle the data but also to optimize sensing performance. In this study, we combine projection techniques with micro-Raman scattering and atomic force microscopy (AFM) to address critical issues related to practical applications of electronic tongues (e-tongues) based on impedance spectroscopy. Experimentally, we used sensing units made with thin films of a perylene derivative (AzoPTCD acronym), coating Pt interdigitated electrodes, to detect CuCl(2) (Cu(2+)), methylene blue (MB), and saccharose in aqueous solutions, which were selected due to their distinct molecular sizes and ionic character in solution. The AzoPTCD films were deposited from monolayers to 120 nm via Langmuir-Blodgett (LB) and physical vapor deposition (PVD) techniques. Because the main aspects investigated were how the interdigitated electrodes are coated by thin films (architecture on e-tongue) and the film thickness, we decided to employ the same material for all sensing units. The capacitance data were projected into a 2D plot using the force scheme method, from which we could infer that at low analyte concentrations the electrical response of the units was determined by the film thickness. Concentrations at 10 mu M or higher could be distinguished with thinner films tens of nanometers at most-which could withstand the impedance measurements, and without causing significant changes in the Raman signal for the AzoPTCD film-forming molecules. The sensitivity to the analytes appears to be related to adsorption on the film surface, as inferred from Raman spectroscopy data using MB as analyte and from the multidimensional projections. The analysis of the results presented may serve as a new route to select materials and molecular architectures for novel sensors and biosensors, in addition to suggesting ways to unravel the mechanisms behind the high sensitivity obtained in various sensors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

10.1002/hlca.200390311.abs A series of oligonucleotides containing (5′S)-5′-C-butyl- and (5′S)-5′-C-isopentyl-substituted 2′-deoxyribonucleosides were designed, prepared, and characterized with the intention to explore alkyl-zipper formation between opposing alkyl chains across the minor groove of oligonucleotide duplexes as a means to modulate DNA-duplex stability. From four possible arrangements of the alkyl groups that differ in the density of packing of the alkyl chains across the minor groove, three (duplex types I–III, Fig. 2) could experimentally be realized and their duplex-forming properties analyzed by UV-melting curves, CD spectroscopy, and isothermal titration calorimetry (ITC), as well as by molecular modeling. The results show that all arrangements of alkyl residues within the minor groove of DNA are thermally destabilizing by 1.5–3°/modification in Tm. We found that, within the proposed duplexes with more loosely packed alkyl groups (type-III duplexes), accommodation of alkyl residues without extended distorsion of the helical parameters of B-DNA is possible but does not lead to higher thermodynamic stability. The more densely packed and more unevenly distributed arrangement (type-II duplexes) seems to suffer from ecliptic positioning of opposite alkyl groups, which might account for a systematic negative contribution to stability due to steric interactions. The decreased stability in the type-III duplexes described here may be due either to missing hydrophobic interactions of the alkyl groups (not bulky enough to make close contacts), or to an overcompensation of favorable alkyl-zipper formation presumably by loss of structured H2O in the minor groove.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rugose colony variant of Vibrio cholerae O1, biotype El Tor, is shown to produce an exopolysaccharide, EPSETr, that confers chlorine resistance and biofilm-forming capacity. EPSETr production requires a chromosomal locus, vps, that contains sequences homologous to carbohydrate biosynthesis genes of other bacterial species. Mutations within this locus yield chlorine-sensitive, smooth colony variants that are biofilm deficient. The biofilm-forming properties of EPSETr may enable the survival of V. cholerae O1 within environmental aquatic habitats between outbreaks of human disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aliado ao fato dos biomateriais ainda serem pouco explorados pelas indústrias alimentícias, este trabalho propôs o desenvolvimento de embalagens que sejam, além de biodegradáveis, também ativas através do uso de um agente antimicrobiano natural capaz de inibir a proliferação de fungos correntes em produtos de panificação (Penicillium commune e Eurotium amstelodami). Primeiramente, filmes biodegradáveis a base de fécula de mandioca foram elaborados pela técnica de casting, usando açúcares e glicerol como plastificantes. O aumento do conteúdo de glicerol causou diminuição da resistência máxima à tração e elevação dos valores de propriedades de barreira. Numa segunda etapa do trabalho, a introdução de nanopartículas de argila esmectita influenciou positivamente as propriedades de barreira dos filmes, devido à diminuição observada nos valores de permeabilidade ao vapor de água e coeficiente de permeabilidade ao oxigênio. Nesta fase, a variação do conteúdo de glicerol também afetou significativamente as propriedades mecânicas e de barreira dos filmes biodegradáveis. As concentrações inibitórias mínimas dos óleos essenciais de cravo e de canela contra os fungos estudados foram definidas e o óleo essencial de canela foi selecionado, para ser incorporado aos filmes biodegradáveis, em três conteúdos distintos, pois foi o composto que mostrou uma inibição mais eficiente. A atividade antimicrobiana dos filmes biodegradáveis com incorporação de óleo essencial de canela foi testada sobre os micro-organismos escolhidos através de testes de difusão em halo, cujos resultados foram suficientes para demonstrar o potencial ativo da embalagem desenvolvida. Como método alternativo de incorporação do agente antimicrobiano, gás carbônico (CO2) em estado supercrítico foi utilizado como solvente. Os resultados obtidos foram promissores, uma vez que se observou incorporação de agente antimicrobiano dentro da matriz polimérica em quantidade suficiente para inibir a proliferação dos fungos testados.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water-based latices, used in the production of internal liners for beer/beverage cans, were investigated using a number of analytical techniques. The epoxy-graft-acrylic polymers, used to prepare the latices, and films, produced from those latices, were also examined. It was confirmed that acrylic polymer preferentially grafts onto higher molecular weight portions of the epoxy polymer. The amount of epoxy remaining ungrafted was determined to be 80%. This figure is higher than was previously thought. Molecular weight distribution studies were carried out on the epoxy and epoxy-g-acrylic resins. A quantitative method for determining copolymer composition using GPC was evaluated. The GPC method was also used to determine polymer composition as a function of molecular weight. IR spectroscopy was used to determine the total level of acrylic modification of the polymers and NMR was used to determine the level of grafting. Particle size determinations were carried out using transmission electron microscopy and dynamic light scattering. Levels of stabilising amine greatly affected the viscosity of the latex, particle size and amount of soluble polymer but the core particle size, as determined using TEM, was unaffected. NMR spectra of the latices produced spectra only from solvents and amine modifiers. Using solid-state CP/MAS/freezing techniques spectra from the epoxy component could be observed. FT-IR spectra of the latices were obtained after special subtraction of water. The only difference between the spectra of the latices and those of the dry film were due to the presence of the solvents in the former. A distinctive morphology in the films produced from the latices was observed. This suggested that the micelle structure of the latex survives the film forming process. If insufficient acrylic is present, large epoxy domains are produced which gives rise to poor film characteristics. Casting the polymers from organic solutions failed to produce similar morphology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ODTs have emerged as a novel oral dosage form with a potential to deliver a wide range of drug candidates to paediatric and geriatric patients. Compression of excipients offers a costeffective and translatable methodology for the manufacture of ODTs. Though, technical challenges prevail such as difficulty to achieve suitable tablet mechanical strength while ensuring rapid disintegration in the mouth, poor compressibility of preferred ODT diluent Dmannitol, and limited use for modified drug-release. The work investigates excipients’ functionality in ODTs and proposes new methodologies for enhancing material characteristics via process and particle engineering. It also aims to expand ODT applications for modified drug-release. Preformulation and formulation studies employed a plethora of techniques/tests including AFM, SEM, DSC, XRD, TGA, HSM, FTIR, hardness, disintegration time, friability, stress/strain and Heckel analysis. Tableting of D-mannitol and cellulosic excipients utilised various compression forces, material concentrations and grades. Engineered D-mannitol particles were made by spray drying mannitol with pore former NH4HCO3. Coated microparticles of model API omeprazole were prepared using water-based film forming polymers. The results of nanoscopic investigations elucidated the compression profiles of ODT excipients. Strong densification of MCC (Py is 625 MPa) occurs due to conglomeration of physicomechanical factors whereas D-mannitol fragments under pressure leading to poor compacts. Addition of cellulosic excipients (L-HPC and HPMC) and granular mannitol to powder mannitol was required to mechanically strengthen the dosage form (hardness >60 N, friability <1%) and to maintain rapid disintegration (<30 sec). Similarly, functionality was integrated into D-mannitol by fabrication of porous, yet, resilient particles which resulted in upto 150% increase in the hardness of compacts. The formulated particles provided resistance to fracture under pressure due to inherent elasticity while promoted tablet disintegration (50-77% reduction in disintegration time) due to porous nature. Additionally, coated microparticles provided an ODT-appropriate modified-release coating strategy by preventing drug (omeprazole) release.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Light transmission was measured through intact, submerged periphyton communities on artificial seagrass leaves. The periphyton communities were representative of the communities on Thalassia testudinum in subtropical seagrass meadows. The periphyton communities sampled were adhered carbonate sediment, coralline algae, and mixed algal assemblages. Crustose or film-forming periphyton assemblages were best prepared for light transmission measurements using artificial leaves fouled on both sides, while measurements through three-dimensional filamentous algae required the periphyton to be removed from one side. For one-sided samples, light transmission could be measured as the difference between fouled and reference artificial leaf samples. For two-sided samples, the percent periphyton light transmission to the leaf surface was calculated as the square root of the fraction of incident light. Linear, exponential, and hyperbolic equations were evaluated as descriptors of the periphyton dry weight versus light transmission relationship. Hyperbolic and exponential decay models were superior to linear models and exhibited the best fits for the observed relationships. Differences between the coefficients of determination (r2) of hyperbolic and exponential decay models were statistically insignificant. Constraining these models for 100% light transmission at zero periphyton load did not result in any statistically significant loss in the explanatory capability of the models. In most all cases, increasing model complexity using three-parameter models rather than two-parameter models did not significantly increase the amount of variation explained. Constrained two-parameter hyperbolic or exponential decay models were judged best for describing the periphyton dry weight versus light transmission relationship. On T. testudinum in Florida Bay and the Florida Keys, significant differences were not observed in the light transmission characteristics of the varying periphyton communities at different study sites. Using pooled data from the study sites, the hyperbolic decay coefficient for periphyton light transmission was estimated to be 4.36 mg dry wt. cm−2. For exponential models, the exponential decay coefficient was estimated to be 0.16 cm2 mg dry wt.−1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a study of the star-forming properties of a stellar mass-selected sample of galaxies in the GOODS (Great Observatories Origins Deep Survey) NICMOS Survey (GNS), based on deep Hubble Space Telescope (HST) imaging of the GOODS North and South fields. Using a stellar mass-selected sample, combined with HST/ACS and Spitzer data to measure both ultraviolet (UV) and infrared-derived star formation rates (SFRs), we investigate the star forming properties of a complete sample of ∼1300 galaxies down to log M_*= 9.5 at redshifts 1.5 < z < 3. Eight per cent of the sample is made up of massive galaxies with M_*≥ 10^11 M_⊙. We derive optical colours, dust extinctions and UV and infrared SFR to determine how the SFR changes as a function of both stellar mass and time. Our results show that SFR increases at higher stellar mass such that massive galaxies nearly double their stellar mass from star formation alone over the redshift range studied, but the average value of SFR for a given stellar mass remains constant over this ∼2 Gyr period. Furthermore, we find no strong evolution in the SFR for our sample as a function of mass over our redshift range of interest; in particular we do not find a decline in the SFR among massive galaxies, as is seen at z < 1. The most massive galaxies in our sample (log M_*≥ 11) have high average SFRs with values SFR_UV, corr= 103 ± 75 M_⊙ yr^−1, and yet exhibit red rest-frame (U−B) colours at all redshifts. We conclude that the majority of these red high-redshift massive galaxies are red due to dust extinction. We find that A_2800 increases with stellar mass, and show that between 45 and 85 per cent of massive galaxies harbour dusty star formation. These results show that even just a few Gyr after the first galaxies appear, there are strong relations between the global physical properties of galaxies, driven by stellar mass or another underlying feature of galaxies strongly related to the stellar mass.